Posts

DSC_0050 Zach Doty AS PostgreSQL Statement Cover Photo

JOINS Foundations: The AS PostgreSQL Statement

Intro to JOINS: the AS PostgreSQL Statement

What’s up SQL people? We’re back, and better than ever, in our foray to learn PostgreSQL. Since we’ve completed some intermediate skills challenges & learned GROUP BY, it’s time to examine JOINS.

Before we examine JOINS, there’s a key foundation piece we must cover first: the AS statement in PostgreSQL. Let’s jump in.

 

About the AS Statement

The AS statement in PostgreSQL enables us to rename sections of a table or table columns with a temporary alias, or almost a variable, for manipulation.

It’s a simple statement, so let’s see it in action.

 

1. Basic AS Statement Example

Our most basic example is a basic query where perhaps a column wasn’t named to our liking. Consider the following.

SELECT rental_rate AS film_cost

FROM film

LIMIT 10;

2017-08-30-001-AS-Statement-Syntax-Example-1

Great for an introductory example, but not inherently useful. Read on as we apply the AS statement more deeply.

2. Semi-Intermediate AS Statement Example

Let’s provide an example that’s a bit more engaged. Example, if we use aggregate functions, the column output doesn’t have a clean name attached to it. But no longer! The AS statement allows us to have the summation output in a GROUP BY statement to something we’ll recognize.

 

SELECT customer_id, SUM(amount) AS customer_ltv

FROM payment

GROUP BY customer_id

ORDER BY customer_ltv DESC

LIMIT 7;

2017-08-30-002-AS-Statement-Syntax-aggregate-example-2

 

This is something more useful for intermediate PostgreSQL work!

 

Wrap Up

We aren’t spending much further time here since this is a simple application and the JOINS statement is the function we’re truly after. If you’re just joining this series, check out our home page on how to learn PostgreSQL.

DSC_0012 Zach Doty PostgreSQL cover photo

PostgreSQL Intermediate Skills Test

Hey there, SQL-ites. Time for another (yes, another!) PostgreSQL skills challenge. It’s our last stop before moving into more intermediate and advanced PostgreSQL skills, such as JOINS.

If you’re just joining this series on SQL, we previously covered the HAVING statement & GROUP BY. Here’s the home page of our journey in learning PostgreSQL. Today, we do a more rounded knowledge check of older PostgreSQL statements, such as SELECT WHERE, COUNT & ORDER BY.

We have 3 problems, and provide the winning code for each, based on our sample database. In the past, I’ve given more explanation to the problems, but because I’m trying to get some traction myself in moving forward, we’ll only have problem & solution laid out here.

Alright, let’s go!

1. Return the customer IDs of customers who have spent at least $110 with the staff member who has an ID of 2.

The answer should be customers 187 and 148.

SELECT customer_id, SUM(amount)
FROM payment
WHERE staff_id=2
GROUP BY customer_id
HAVING SUM(amount) >110;

 

2. How many films begin with the letter J?

The answer should be 20.

SELECT COUNT(*) FROM film

WHERE title LIKE ‘J%’;

 

3. What customer has the highest customer ID number whose name starts with an ‘E’ and has an address ID lower than 500?

The answer is Eddie Tomlin.

SELECT customer_id, first_name, last_name, address_id
FROM customer
WHERE address_id <500 AND first_name LIKE ‘E%’
ORDER BY customer_id DESC;

 

We’ll see you on the other side soon, for some JOINS awesomeness. 🙂

DSC_0300 Zach Doty Cover Photo for HAVING PostgreSQL Clause

The HAVING Clause in PostgreSQL

Howdy SQL-ites! Welcome back to our next step in learning SQL. After a long hiatus, we recently stumbled our way through some intermediate SQL statement challenges, namely on GROUP BY.

Today, we’re back in the flow, and learning about the HAVING clause in PostgreSQL.

 

About the HAVING Clause in PostgreSQL

The HAVING clause is most often seen as a helper with the GROUP BY statementGROUP BY was pretty awesome, right? How might we improve upon it?

Let’s consider two concepts:

  1. Our occasional parallels of PostgreSQL to Excel, and,
  2. Our previous intermediate challenge example.

Relating PostgreSQL’s GROUP BY to Excel

If we hearken back to our first encounter with GROUP BY, we compared GROUP BY to pivot tables. Specifically, if we have a big data table that records data of recurring themes, e.g., you customer base, it can be helpful to manipulate as aggregated and assembled, vs. raw.

However, GROUP BY is only an intermediate step in data analysis. If we think about our final challenge in the last post, we had to limit the results to 5. Even if we group data, it’s neither segmented nor useful toward analysis.

Thus, we need an additional method for winnowing down our GROUP BY results.

 

Meet the HAVING Clause

So, about the HAVING clause. It’s most often used in tandem with GROUP BY to filter out data rows that don’t meet a certain condition. Think of it as similar to the WHERE function, just an accompaniment to GROUP BY.

 

Let’s take a look at basic syntax:

SELECT column, aggregate(column_2)

FROM table

GROUP BY column

HAVING condition;

 

Off the bat, we should this is extremely familiar if we’ve covered GROUP BY. The differentiation is the additional HAVING condition at the end. This condition could be something like, HAVING sum(column_2) less than 50.

The Difference Between WHERE and HAVING

Some of you sharp folks may want to know, “what’s the difference between WHERE and HAVING?” That would be an excellent question. Here’s the difference:

The WHERE clause sets conditions on individual rows, before the GROUP BY clause has been applied. The HAVING clause specifies conditions on grouped rows, created by the GROUP BY clause.

Let’s run some examples.

 

Using the HAVING Clause in PostgreSQL

Here’s our first example, very similar to our previous skills challenge:

SELECT customer_id, SUM(amount)
FROM payment
GROUP BY customer_id
HAVING SUM(amount) > 150;

Above, we have added another segmentation layer with the HAVING clause.

You can see we’re pulling information about how much our customers have paid us. Further, we specify that we only want to see customers with a lifetime purchase amount of greater than $150.

 

Let’s look at another example of the HAVING clause. Say for example, we want to know which store has served the most customers. Below, we’ll execute the following code:

SELECT store_id, COUNT(customer_id)
FROM customer
GROUP BY store_id
HAVING COUNT(customer_id) >275;

Above, we’ve selected both the store and customer ID columns from the customer table. Further, we group by the store ID, because we want store-level data, but we only want to see the stores which have served more than 275 customers. Below, we can see only store has done so. 🙂

 

Combining Usage of the WHERE & HAVING Clauses

We mentioned earlier the WHERE and HAVING clauses are different, somewhat in function, but mostly in order of execution. Here’s what we didn’t say: you can actually use them in tandem. There is a great theoretical use case for this, unfortunately our sample database is a bit small, but here goes.

Let’s think about the film table (used in previous examples.) Perhaps we want to analyze the films, by rental rate, but only films with certain ratings. For example, perhaps we’re no longer interested in carrying NC-17 films, but still want to get an aggregated view of on average, how much each films rents for, by rating. Additionally, we want to see which ratings, if any, have an average rental rate of less than $3.

Here’s the code we would use:

SELECT rating, ROUND(AVG(rental_rate),2)
FROM film
WHERE rating IN (‘R’,’G’,’PG’,’PG-13′)
GROUP BY rating
HAVING AVG(rental_rate)<3;

 

 

Wrap Up

Alright, that concludes our section for today. It feels good to be back. 🙂

Hopefully you found this section on the HAVING PostgreSQL statement useful. If you need to backtrack or further explore, here are some useful/recent links:

DSC_0045 Zach Doty Cover Photo Group By SQL Statement Function

GROUP BY SQL Statement

Introducing the GROUP BY SQL Statement in PostgreSQL

‘Ello SQL geeks! Welcome back to our SQL learning journey. We left off with a beginner SQL skills challenge and the aggregate SQL functions: MIN, MAX, AVG and SUM. Today we’re looking at the GROUP BY statement. We’ll learn about this function in PostgreSQL and walk through usage of this handy SQL statement.

 

About the GROUP BY SQL Statement/Clause

From my simple understanding, GROUP BY functions like a hybrid of the following:

  • SELECT DISTINCT keyword (If used without an aggregate function like SUM), and,
  • An Excel pivot table, rolling up aggregate figures (Count, Sum, Average, etc.) into unique rows

If you’re familiar with Excel Pivot tables, then you’ll recognize here the power of this function.

 

Let’s take a look at some examples to clarify.

 

First Look at Using the GROUP BY Function

To better illustrate the power of GROUP BY, we’ll first show its usage without aggregate functions. Consider the following:

If we query the address table of our sample database with a generic SELECT * FROM address; we get back an atrocious 605 rows of data. Aggregate and useless!

2017-04-27-001-GROUB-BY-Generic-SELECT-Query-Pitfall

In contrast, if we call the GROUP BY function, we’ll get back a cleaner output, with fewer rows – only unique values returned. While this is an incremental improvement to analyzing data, there’s much left to be desired.

2017-04-27-002-GROUP-BY-Without-Aggregate-Function

 

What’s missing here? How about that pivot table-esque functionality? This is where the power of using GROUP BY with aggregate functions gets awesome.

Using the GROUP BY SQL Statement with Aggregate Functions

As with most analysis, a single data point or data series rarely holds significant insight value on its own. Let’s drive home that point by leveraging the GROUP BY statement with the SUM aggregate function. Below, we compare the ratings of films in our sample database in aggregate by replacement cost. Perhaps this could serve in-store strategies for loss prevention.

SELECT rating, SUM(replacement_cost)
FROM film
GROUP BY rating;

2017-04-27-003-GROUP-BY-SUM-Aggregate-Function

If we extend this functionality to more real world examples, we could use the following for GROUP BY:

  • Grouping page-level / URL data to roll up clickstream analytics data
  • Large scale analysis of CRM data for customer segmentation analysis
  • Analyzing returns for financial data

The list could (and I’m sure it does) go on.

Let’s take this one step further and reduce potential future workload, by building sort functionality into our query. Below, we add a line to get most expensive ratings to least.

SELECT rating, SUM(replacement_cost)
FROM film
GROUP BY rating
ORDER BY SUM(replacement_cost) DESC;

2017-04-27-004-GROUP-BY-SUM-ORDER-BY-SUM

By the looks of this, no need to guard Land Before Time 8. 🙂

Extending our lesson: you can use the COUNT, AVG, and other aggregate functions to analyze as desired.

 

Wrap Up

Alright, this was a relatively gentle introduction into more advanced SQL functions. GROUP BY is a rather critical function, so in our next article, we’ll be doing yet another skills challenge. Joy!

Feel free to catch up on our other articles that help you learn PostgreSQL. Also, check out some how-to’s on developing Amazon Alexa skills, and a new series on getting started with Machine Learning. As always, please share with your colleagues and share thoughts in the comments below. Cheers.

DSC_0007 Zach Doty Cover Photo for Beginner PostgreSQL Skills Challenge

Beginner SQL Skills Challenge!

Howdy, SQL geeks. Hope this post finds you swell!

Over the past few months, we’ve gained a ton of ground in learning SQL, or at least I have. 🙂

Let’s take a moment to:

  1. Test our knowledge of SQL skills learned thus far
  2. Start seeing SQL queries less as statements of code, and more as real world business challenges

In this article, we’ll have a recap plus three sections:

  • Recap of the training database we’ve been working with
  • General statements of each business problem
  • Hints and thoughts about how to approach each problem
  • Solutions to each problem

 

Recap: Our Training Database

Our training database is a best/old faithful. We’ve been using the surprisingly popular DVD rental database in a .tar file for our practice database.

Contained within this databases are various tables with fictitious information, including: customer information, film production information, business/pricing information and so forth.

In our challenges, we’ll execute various SQL queries to extract pieces of insight for business tasks. It’s assumed in this article that you’ve installed PostgreSQL via pgAdmin and have followed this article series so far, using the DVD rental training database.

Without further ado, let’s begin.

 

The SQL Challenges

Alright, here we go:

  1. How rentals were returned after July 17, 2005?
  2. How many actors have a last name that starts with the letter A?
  3. How many unique districts are represented in the customer database?
  4. Can you return the actual list of districts from challenge #3?
  5.  How many films have a rating of R and a replacement cost between $5 and $15?
  6. How many films have the word Truman somewhere in the title?

 

How to Approach the Challenges

Right, then. In this section, we’ll add some color commentary (read: hints) to our challenges. This should help you understand the mechanics of the solution, while ensuring you can’t see the answers all in one screen. 😉

 

Challenge 1: Rentals Returned After July 17, 2005

As with all challenges, a problem well stated is half (or more) solved. So let’s look at the high levels of the ask, and work our way down. We need information on rentals, so this means we’ll probably be querying the rentals table.

We would want to first examine the rentals table in a concise manner by doing:

SELECT * FROM rental LIMIT 5;

Once you’ve surveyed the table, we really only need one column returned (pun not intended) and we only want the sum figure of returns, where (HINT!!) the return date was after (think a logical operator here) July 17, 2005.

 

Challenge 2: Actors That Have a Last Name Beginning with “A”

Like our first challenge, let’s work from the “top down”. We need actor information, so querying the actor table would be a great place to start. Similar to last time, we need a count of values matching a condition. The difference versus challenge #1  is we need to find match a pattern like or such as an actor’s last name that begins with the letter A.

 

Challenge 3: Number of Unique Districts in the Customer Database

The title and description could cause some confusion here. You may need to do some basic SELECT * FROM table_name LIMIT X; queries to make sure you’ve got the right table. Once you do, we’re looking for an amount of distinct values in the database. Order of operations matters.

 

Challenge 4: Returning the Actual Lists of Districts from Challenge #3

Not much to hint at here – getting challenge #3 is the key here. You’ll really only be simplifying the correct query in challenge #3 to get the correct answer here.

 

Challenge 5: Cheap, (Mildly) Naughty Films

This one might be the longest query yet in this challenge. So we’re looking up film information, thus should know which table to query. We’re returning a value where a certain rating must be returned, and (HINT) we need to layer in one more lens of qualification. That lens dictates we specify a range between (cough, hint!) two values.

 

Challenge 6: Where in the World are Films Containing “Truman”?

This challenge is more of a recency test than retention of older concepts. You’ll need to employ pattern matching again for this business challenge/query to find titles that have some match like Truman in the title.

 

 

Challenge Solutions

Is that your final answer? Below are the queries, with screenshots of what I did.

 

Solution 1: Rentals Returned After July 17, 2005

SELECT COUNT(return_date) FROM rental
WHERE return_date > ‘2005-07-17’;

2017-04-15-001-Challenge-1-Sol-Count-From-Where

 

Solution 2: Actors That Have a Last Name Beginning with “A”

SELECT COUNT(*) FROM actor
WHERE last_name LIKE ‘A%’;

2017-04-15-002-Challenge-2-Sol-Count-From-Where-Like

 

Solution 3: Number of Unique Districts in the Customer Database

SELECT COUNT(DISTINCT(district)) FROM address;

2017-04-15-003-Challenge-3-Sol-Count-Distinct

 

Solution 4: Returning the Actual Lists of Districts from Challenge #3

SELECT DISTINCT(district) FROM address;

2017-04-15-004-Challenge-4-Sol-Select-Distinct

 

Solution 5: Cheap, (Mildly) Naughty Films

SELECT COUNT(*) FROM film
WHERE rating = ‘R’
AND replacement_cost BETWEEN 5 AND 15;

2017-04-15-005-Challenge-4-Sol-Count-From-Where-Between-And

 

Solution 6: Where in the World are Films Containing “Truman”?

SELECT COUNT(*) FROM film
WHERE title LIKE ‘%Truman%’;

2017-04-15-006-Challenge-4-Sol-Count-Where-Like-Wildcard

 

Wrap Up

Well done for completing these challenges! You shall indeed pass. 🙂

Soon, we’ll be covering aggregate SQL functions, such as MIN, MAX, AVG and SUM.

If you’re just joining us, here’s a running list of our articles so to date (4/16/2017):