Posts

DSC_0050 Zach Doty AS PostgreSQL Statement Cover Photo

JOINS Foundations: The AS PostgreSQL Statement

Intro to JOINS: the AS PostgreSQL Statement

What’s up SQL people? We’re back, and better than ever, in our foray to learn PostgreSQL. Since we’ve completed some intermediate skills challenges & learned GROUP BY, it’s time to examine JOINS.

Before we examine JOINS, there’s a key foundation piece we must cover first: the AS statement in PostgreSQL. Let’s jump in.

 

About the AS Statement

The AS statement in PostgreSQL enables us to rename sections of a table or table columns with a temporary alias, or almost a variable, for manipulation.

It’s a simple statement, so let’s see it in action.

 

1. Basic AS Statement Example

Our most basic example is a basic query where perhaps a column wasn’t named to our liking. Consider the following.

SELECT rental_rate AS film_cost

FROM film

LIMIT 10;

2017-08-30-001-AS-Statement-Syntax-Example-1

Great for an introductory example, but not inherently useful. Read on as we apply the AS statement more deeply.

2. Semi-Intermediate AS Statement Example

Let’s provide an example that’s a bit more engaged. Example, if we use aggregate functions, the column output doesn’t have a clean name attached to it. But no longer! The AS statement allows us to have the summation output in a GROUP BY statement to something we’ll recognize.

 

SELECT customer_id, SUM(amount) AS customer_ltv

FROM payment

GROUP BY customer_id

ORDER BY customer_ltv DESC

LIMIT 7;

2017-08-30-002-AS-Statement-Syntax-aggregate-example-2

 

This is something more useful for intermediate PostgreSQL work!

 

Wrap Up

We aren’t spending much further time here since this is a simple application and the JOINS statement is the function we’re truly after. If you’re just joining this series, check out our home page on how to learn PostgreSQL.

DSC_0012 Zach Doty PostgreSQL cover photo

PostgreSQL Intermediate Skills Test

Hey there, SQL-ites. Time for another (yes, another!) PostgreSQL skills challenge. It’s our last stop before moving into more intermediate and advanced PostgreSQL skills, such as JOINS.

If you’re just joining this series on SQL, we previously covered the HAVING statement & GROUP BY. Here’s the home page of our journey in learning PostgreSQL. Today, we do a more rounded knowledge check of older PostgreSQL statements, such as SELECT WHERE, COUNT & ORDER BY.

We have 3 problems, and provide the winning code for each, based on our sample database. In the past, I’ve given more explanation to the problems, but because I’m trying to get some traction myself in moving forward, we’ll only have problem & solution laid out here.

Alright, let’s go!

1. Return the customer IDs of customers who have spent at least $110 with the staff member who has an ID of 2.

The answer should be customers 187 and 148.

SELECT customer_id, SUM(amount)
FROM payment
WHERE staff_id=2
GROUP BY customer_id
HAVING SUM(amount) >110;

 

2. How many films begin with the letter J?

The answer should be 20.

SELECT COUNT(*) FROM film

WHERE title LIKE ‘J%’;

 

3. What customer has the highest customer ID number whose name starts with an ‘E’ and has an address ID lower than 500?

The answer is Eddie Tomlin.

SELECT customer_id, first_name, last_name, address_id
FROM customer
WHERE address_id <500 AND first_name LIKE ‘E%’
ORDER BY customer_id DESC;

 

We’ll see you on the other side soon, for some JOINS awesomeness. 🙂

DSC_0300 Zach Doty Cover Photo for HAVING PostgreSQL Clause

The HAVING Clause in PostgreSQL

Howdy SQL-ites! Welcome back to our next step in learning SQL. After a long hiatus, we recently stumbled our way through some intermediate SQL statement challenges, namely on GROUP BY.

Today, we’re back in the flow, and learning about the HAVING clause in PostgreSQL.

 

About the HAVING Clause in PostgreSQL

The HAVING clause is most often seen as a helper with the GROUP BY statementGROUP BY was pretty awesome, right? How might we improve upon it?

Let’s consider two concepts:

  1. Our occasional parallels of PostgreSQL to Excel, and,
  2. Our previous intermediate challenge example.

Relating PostgreSQL’s GROUP BY to Excel

If we hearken back to our first encounter with GROUP BY, we compared GROUP BY to pivot tables. Specifically, if we have a big data table that records data of recurring themes, e.g., you customer base, it can be helpful to manipulate as aggregated and assembled, vs. raw.

However, GROUP BY is only an intermediate step in data analysis. If we think about our final challenge in the last post, we had to limit the results to 5. Even if we group data, it’s neither segmented nor useful toward analysis.

Thus, we need an additional method for winnowing down our GROUP BY results.

 

Meet the HAVING Clause

So, about the HAVING clause. It’s most often used in tandem with GROUP BY to filter out data rows that don’t meet a certain condition. Think of it as similar to the WHERE function, just an accompaniment to GROUP BY.

 

Let’s take a look at basic syntax:

SELECT column, aggregate(column_2)

FROM table

GROUP BY column

HAVING condition;

 

Off the bat, we should this is extremely familiar if we’ve covered GROUP BY. The differentiation is the additional HAVING condition at the end. This condition could be something like, HAVING sum(column_2) less than 50.

The Difference Between WHERE and HAVING

Some of you sharp folks may want to know, “what’s the difference between WHERE and HAVING?” That would be an excellent question. Here’s the difference:

The WHERE clause sets conditions on individual rows, before the GROUP BY clause has been applied. The HAVING clause specifies conditions on grouped rows, created by the GROUP BY clause.

Let’s run some examples.

 

Using the HAVING Clause in PostgreSQL

Here’s our first example, very similar to our previous skills challenge:

SELECT customer_id, SUM(amount)
FROM payment
GROUP BY customer_id
HAVING SUM(amount) > 150;

Above, we have added another segmentation layer with the HAVING clause.

You can see we’re pulling information about how much our customers have paid us. Further, we specify that we only want to see customers with a lifetime purchase amount of greater than $150.

 

Let’s look at another example of the HAVING clause. Say for example, we want to know which store has served the most customers. Below, we’ll execute the following code:

SELECT store_id, COUNT(customer_id)
FROM customer
GROUP BY store_id
HAVING COUNT(customer_id) >275;

Above, we’ve selected both the store and customer ID columns from the customer table. Further, we group by the store ID, because we want store-level data, but we only want to see the stores which have served more than 275 customers. Below, we can see only store has done so. 🙂

 

Combining Usage of the WHERE & HAVING Clauses

We mentioned earlier the WHERE and HAVING clauses are different, somewhat in function, but mostly in order of execution. Here’s what we didn’t say: you can actually use them in tandem. There is a great theoretical use case for this, unfortunately our sample database is a bit small, but here goes.

Let’s think about the film table (used in previous examples.) Perhaps we want to analyze the films, by rental rate, but only films with certain ratings. For example, perhaps we’re no longer interested in carrying NC-17 films, but still want to get an aggregated view of on average, how much each films rents for, by rating. Additionally, we want to see which ratings, if any, have an average rental rate of less than $3.

Here’s the code we would use:

SELECT rating, ROUND(AVG(rental_rate),2)
FROM film
WHERE rating IN (‘R’,’G’,’PG’,’PG-13′)
GROUP BY rating
HAVING AVG(rental_rate)<3;

 

 

Wrap Up

Alright, that concludes our section for today. It feels good to be back. 🙂

Hopefully you found this section on the HAVING PostgreSQL statement useful. If you need to backtrack or further explore, here are some useful/recent links:

DSC_0006 Zach Doty Intermediate GROUP BY SQL Skills Challenge Cover Photo

Intermediate SQL Skills Challenge: GROUP BY

Hey there SQL-ites! Wow, it’s been awhile since I’ve last posted. Work has been crazy busy again, and just life in general. Sure feels good to be back, learning again! I’m daringly dropping straight back into my learnings from where we left off…in April!? Crazy.

Anyway, let’s get back to brass tacks. Before life and work got really crazy for me, we covered:

Another quick recap note, we’ve been using the famous DVD rental training database for our work. On to the good stuff.

 

GROUP BY SQL Skills Challenge #1

Let’s say it’s time for quarterly reviews, who doesn’t love evaluations? ¯_(ツ)_/¯ Implement your knowledge of GROUP BY against the following problem:

We need to figure out how much revenue our employees have realized from DVD rentals, and how many transactions each handled.

 

GROUP BY SQL Skills Answer #1

Let’s talk through the problem and dissect it before presenting code. “A problem well-stated is a problem-half solved” – paraphrase of some smart person.

  1. We’re talking about revenue, so we’ll need to be dealing with the payment table.
  2. We’re evaluating employees (staff), SUM of revenue, and COUNT of transactions.
  3. If we’re aggregating this data, we’re GROUPing BY employee.
  4. We’re also ORDERing the employees BY who handled the most transactions.

That said, here’s the code:

SELECT staff_id, SUM(amount), COUNT(amount)
FROM payment
GROUP BY staff_id
ORDER BY COUNT(amount) DESC;

…with our results!

 

GROUP BY SQL Skills Challenge #2

Well done on your challenge! Here’s the second:

It’s time to do inventory, flashbacks of retail and restaurant wonder for all of us. 🙂

In the name of forecasting and planning, we need to figure out the average replacement cost of our movies, by rating.

 

GROUP BY SQL Skills Answer #2

Ok, let’s walk through our problem.

  1. We need to use the film database here, since we’re gathering information on the movies.
  2. We’re GROUPing our films BY rating
  3. We’re using an aggregate function to determine the average replacement cost of each rating.

Drum roll, here’s a winning code snippet:

SELECT rating, AVG(replacement_cost)
FROM film
GROUP BY rating
ORDER BY AVG(replacement_cost) DESC;

With the output:

 

Are there more challenges we should be covering? Yes. However, I’m trying to do better about getting more sleep these days. Unlike past SQL articles, it’s still (barely) before midnight. So we’ll take a quick breather, possibly update this article, but definitely keep moving forward. Cheers!

 

Update- 8/20/2017 —

GROUP BY SQL Skills Challenge #3!

Alright SQL-ites. After getting some rest, I’ve regrouped a few days later to cover the last challenge:

From our database, we want to get the customer ID’s of the top 5 customers, by money spent, so we can send them a thank you for their business!

 

GROUP BY SQL Skills Answer #3

Let’s diagnose the problem.

  1. If we’re gathering revenue information, we’ll need to use the payment table.
  2. If we’re getting the top spending customers, we’ll need to GROUP all transactions BY customer ID
  3. To see the top 5 paying customers, we’ll want to ORDER the results BY the SUM of payment amount.

Considering the above, here’s our code:

SELECT customer_id, SUM(amount)
FROM payment
GROUP BY customer_id
ORDER BY SUM(amount) DESC
LIMIT 5;

DSC_0069 Zach Doty Cover Photo for What is data science

What is Data Science?

Welcome back, campers! It’s been a minute (read:months) since I’ve last posted, and we’re back! (For now.)

Today’s topic, data science: supposedly the latest exploding field, critical to every enterprise.

Why is it important and relevant? The rise of big data has created a relatively untapped treasure trove of insight. However, it’s undeveloped! Further, the tapping of this insight requires a blended skill set which is currently in short supply in the market: the data scientist.

Who and what is a data scientist?

A data scientist is someone who finds new discoveries in data. They investigate hypotheses and look for meaning and knowledge within the data. They visualize the data by creating reports and looking for patterns. What distinguishes a data scientist from a traditional business analyst is the use of algorithms. Algorithms are one of the fundamental tools for data scientists. This requires mathematics knowledge, computer science savvy and domain knowledge.

What does it mean to be a data scientist?

A data scientist may handle open-ended questions such as, “Which customers are more likely to churn?” The data scientist would gather all the data, and run algorithms to find dependable patterns to improve the situation. Seems straightforward, yes? However, there are a range of misconceptions about data science and data scientist For example,  a data scientist may not necessarily be a developer-only or business intelligence analyst-only.

A data scientist will be able to combine both technical know-how and business domain knowledge into mathematics and statistics for maximum effect. That being said, true data scientists are extremely difficult to find and train. However, it may be possible to become a data scientist without expensive and time-consuming degrees, via focused tools and application training.

An oversimplified Venn diagram showing the makeup and value of a data scientist

An oversimplified Venn diagram showing the makeup and value of a data scientist

More Notes on Data Science

When considering data science from a managerial perspective, it’s important to understand the current broad allocation of the average data scientist’s time. An estimated 60-705 of a data scientist’s time is spent assembling and cleaning data, tasks which could be delegated to technical specialists, data integration specialists and so forth. (For example, text mining, SQL queries and so forth.)

If you’ve followed my site and blog lately, you’ll noticed I’ve lapsed a bit on posting. I’m trying to get back into sharing my education again, so stay tuned. Things have just been busy lately. 🙂

SQL Aggregate Functions: Min, Max, Avg and Sum

Welcome back, SQL nerds! We’re back in action on the journey of learning SQL, after a beginner PostgreSQL skills challenge.

We’re reaching the end of basic functions and queries with this article. Based on what we’ve learned so far, we can do basic counting, filtering, sorting and pattern matching against PostgreSQL databases.

If you’re just tuning in, here’s the page on how to learn SQL, and the previous SQL article on the LIKE Statement.

Okay, enough jabber. Let’s jump in. The aggregate functions of MIN, MAX, AVG and SUM are our turning point into more complex SQL queries that involve concepts such as GROUP BY, among others.

At the same time, the functions on their own aren’t super complicated. Because we’re ass-u-ming you’re familiar with the general concepts of minimum, maximum, etc., we’re going to forgo conceptual and syntax explanations for demos.

 

AVG Aggregate Function

As we level up in SQL, we’re going to do less and less explaining / handholding / screenshots. That said, we’re going to explore our DVD rental data set for a table with a nice numerical component that would make good use of the functions.

We did a SELECT * FROM film LIMIT 15; to get a peek at the columns. For the purposes of this exercise, the replacement_cost column will do nicely.

To get the AVG:

SELECT AVG(replacement_cost) FROM film;

2017-04-17-001-AVG-Aggregate-PostgreSQL-Function

Using ROUND for Decimal Place Control

You’ll notice in the example above that we got 3 decimal places on what’s supposed to be a dollar amount. How do we fix that? Glad you asked. Meet the ROUND function.

We pass in the target value (average of replacement_cost) and mandate the number of decimal places we’d like returned. Below:

SELECT ROUND( AVG(replacement_cost), 2) FROM film;

2017-04-17-002-ROUND-for-AVG-Aggregate-PostgreSQL-Function

 

MIN Aggregate Function

To find the minimum value in a given column:

SELECT MIN(replacement_cost) FROM film;

2017-04-17-004-MIN-Aggregate-PostgreSQL-Function

 

MAX Aggregate Function

To find the maximum value in a given column:

SELECT MAX(replacement_cost) FROM film;

2017-04-17-003-MAX-Aggregate-PostgreSQL-Function

 

SUM Aggregate Function

To find the maximum value in a given column:

SELECT SUM(replacement_cost) FROM film;

2017-04-17-005-SUM-Aggregate-PostgreSQL-Function

 

Wrap-Up

Alright, that was a relatively quick article! Hopefully this was a reprieve from more involved sections in the past. We should find that as we continue to strengthen our core PostgreSQL  capabilities, these articles and our SQL queries should be easier and easier. If you found this article interesting, you might enjoy a new section on how to get started in machine learning. Cheers.

 

 

 

DSC_0064 Zach Doty Unsupervised Machine Learning Intro Cover Photo

Unsupervised Learning Introduction: Machine Learning Essentials

Howdy, machine learning students! Today we’re going to introduce the concept of unsupervised machine learning algorithms.

Quick Recap: Supervised Learning

Before we jump in, let’s quickly recap our last article introducing supervised machine learning algorithms. This will give us the appropriate context for unsupervised learning.

In supervised machine learning problems, we supply pre-labeled data to the algorithm. By supplying data that’s already correctly labeled, we ask the algorithm to further predict (regression) or label (classification) new data.

2017-04-11-004-Multiple-Input-Classication-Machine Learning

 

Unsupervised Machine Learning = Unlabeled Data

The most immediate and prominent difference  for unsupervised learning is the data. Above, we gave the algorithm “a boost” by supplying the intended “right” answers in the data. Below, in an unsupervised machine learning problem, there are no right answers…yet.

2017-04-15-001M-Unsupervised-Machine-Learning-Problem-Data

We’ve supplied the algorithm with data in the problem, but it’s provided without labels or “answers”. We are mandating that the algorithm discover structure and infer patterns/labels on its own. We could also compare the above example to a clustering problem.

So in unsupervised learning, we supply a large amount of unlabeled data, without explicitly identified form or structure. We ask the algorithm to come up with ideas of structure and segmentation on its own.

Some additional applications of unsupervised learning could include:

  • Market segmentation of massive transaction data
  • Large scale social networking data
  • Astronomical data analysis
  • Large scale market data
  • Mass audio/voice analysis
  • Large scale gene clustering

 

Wrap Up

That was a bit of a quick one! The challenge with some these technical subject matter areas is sometimes we have limited room to run before going off into the technical weeds. This is one of those areas. Next, we’ll be covering some key concepts in the areas of machine learning model representation, cost function and parameter learning. Don’t worry too much about those yet, we’ll take it step by step. 🙂
As always, feel free to follow my other journeys of learning PostgreSQL, learning how to develop Amazon Alexa Skills, learning how to get started in algorithmic trading, JavaScript for beginners…and more to come soon! Cheers.

Supervised Learning & Its Types: Machine Learning Essentials

Welcome back, machine learning geeks! Let’s delve deeper into our journey of mastering machine learning. In the previous article, we looked at both informal and technical definitions of machine learning.

 

We also looked at the two major types of machine learning algorithms, A) supervised machine learning algorithms, and B) unsupervised machine learning algorithms. We also mentioned reinforcement learning and recommender systems, but won’t spend as much time there.

 

Let’s jump in!

 

Introduction to Supervised Learning

Supervised machine learning algorithms are used when you:

  1. Have a set of known, correctly labeled data
  2. Are looking to predict a continuous value output

 

Let’s visualize by looking at a digital marketing example.

 

Perhaps we are digital marketers looking to forecast or predict how much time and effort we’ll need to spend on outreach and content promotion for a particular webpage and target ranking.

 

Say we’ve gathered some data about website pages with:

  • Their rank for a given keyword
  • The amount of unique linking domains pointing to each page

 

Such a distribution of data might look like the below. It demonstrates a trend, but right now, we don’t have a single linear function that will “connect all the dots”.

 

2017-04-09-001-Supervised-Machine-Learning-Regression-Example

 

This is a great example for the first major subdivision of supervised machine learning algorithms:

 

Regression Learning Problem

Off the cuff, there are a couple of different ways in which we might try to solve this problem. Both solutions involve using the “labeled” data to predict a line of best fit, which, on the whole, minimizes the distance between the line and all the points. If we have a simple slope, predictions could be precarious at best, and misrepresentative on the other end of the spectrum.

 

We could also instruct our programs to fit a quadratic equation to the data (read: not a straight line.) In our slightly altered example here, the difference could be significant.

 

2017-04-11-002-Regression-Problem-Linear-Quadratic-Comp

 

At this point in time, we won’t focus on whether we should pick a linear or quadratic line for the regression output. However, it is worth noting that the two different methods could yield widely varying results.

 

Say we wanted to get a webpage ranking in position 5 for this given study, a linear example would have us preparing to secure links from ~180 unique domains. If we decided on the quadratic solution, we could be looking at significantly less effort, perhaps ~125 unique linking domains?

 

Classification Learning Problem

Insert smooth segue here and please forgive my lazy writing at this time. 🙂

 

The next major subdivision of supervised machine learning algorithms is known as a classification problem. Let’s use another example.

 

We are analyzing a large user study of an Amazon Alexa Skill in development. Perhaps we are classifying a particular interaction with the skill by success or failure (1 or 0), and plotted against the measured spoken word count for the given interaction.

 

Visualized, this data might look like the below.

 

2017-04-11-003-Supervised-Classification-Machine-Learning

 

In this example with (shockingly 🙂 ) clean data, we might want to guide development efforts in providing the best sample phrases/interactions for the skill. Perhaps, we would want to measure the probability an interaction four (4) spoken words long will be successful. This is known as a classification learning problem.

 

Above, we examined only one factor in determining a probability. However, we aren’t limited to examining just one parameter.

 

Let’s consider the following, perhaps we are an e-commerce retailer or digital business. A frustration for many marketers is the “one and done” (self explanatory) customer that represents minimal customer lifetime value for the brand.

 

It would certainly behoove us to identify these customers and provide them with specialized messaging or a compelling promotion offer to keep them engaged and transacting with the brand.

 

Below, we could have a sample data set to which we fit a line, and thereby predict based on a certain age and AOV (average order value) profile whether a particular transaction is likely or not to be a “one and done” consumer.

 

2017-04-11-004-Multiple-Input-Classication-Machine Learning

 

In practice, we could potentially use a number of inputs to help solve machine learning problems. There are even methods to use an “unlimited” number of inputs- support vector machines. But only a tease for now!

 

Wrap-Up

Our first major classification of machine learning algorithms is supervised learning! In supervised learning, we assist the program by supplying the correct answers in part, and then mandating the program supply correct values via regression or classification, the two major categories of supervised machine learning problems.

 

2017-04-11-005-Major-Supervised-Learning-Algos

 

Moving forward, we’ll dive deeper into one variable linear regression (dare we say the hello world of machine learning?) as well as fleshing other key concepts and methods. If you’re interested in this, you might also be interested in learning PostgreSQL, how to develop Alexa skills, or algorithmic trading. Take care.

DSC_0024 Zach Doty Cover Photo for What is Machine Learning

What is Machine Learning?

Hello there, fellow Machine Learning (ML) students! Welcome back to our crash course in starting machine learning from an absolute beginner’s perspective.

In our previous article, we covered an introduction to Machine Learning, answering several key questions:

  • Where is machine learning used in our lives?
  • Where did machine learning come from?
  • Where is machine learning headed?

Forging ahead in our learning journey, we’ll introduce some definitions of machine learning and look at the major types of machine learning applications.

 

Machine Learning (ML), A Casual Definition by Arthur Samuel

Our first definition, teased in the last article, follows:

Machine learning is the practice of giving computers the ability to learn without being explicitly programmed to do so.

 

More on Arthur Samuel & Why His Definition on ML Matters

If you’re like me, you might not have heard of Arthur Samuel. Who is he, and why does his opinion matter in the fields of artificial intelligence and machine learning?

Arthur Samuel was a pioneer in artificial intelligence and computer gaming fields. In 1959, he coined the term “machine learning” as a founding father in the field. That’s why he’s important! Let’s also look at a more formal / scientific definition.

 

A More Formal Machine Learning Definition

Tom Mitchell, of Carnegie Mellon, offers a definition with more structure.

  • A well defined learning problem follows
  • E * T = P
    • Note: His definition does not include mathematical operators. I’m taking a large liberty to insert them myself. ¯\_(ツ)_/¯
  • Experience (E) placed against Task (T) is measured by Performance (P)

2017-04-06-001-Machine-Learning-Definition-ETP-Framework

Here’s a further example:

Example: playing Go.

E = the experience of playing many games of Go.

T = the task of playing and winning Go.

P = the probability that the program will win the next game.

 

Major Categories of Machine Learning Algorithms

If you judge by press coverage of ML as I have, it appears to be a nebulous field. (In all fairness, it may still be.) However, there is structure we can take in learning ML. There are two types of machine learning algorithms:

  • Supervised learning algorithms
  • Unsupervised learning algorithms

There are a couple of other prominent types of machine learning algorithms as well: reinforcement learning and recommender systems.

 

 Wrap-Up

Congratulations, we’ve cleared a very gentle introduction to machine learning, and it’s novice/high level definitions. I look forward to learning more with you, dear reader! Our next articles will cover a bit more detail about the two major ML algorithm types: supervised learning, and unsupervised learning. Until then, look after each other.

DSC_0013 Zach Doty Cover Photo for Introduction to Machine Learning

An Introduction to Machine Learning

Howdy! This is an abrupt interruption to our regularly scheduled programming of SQL lessons, Amazon Alexa Skill development and Algorithmic trading. For those readers who don’t personally know me, I’m on a quest/streak to level up as a technologist.

Getting around to the point, I’ve been taking self-paced courses in varying forms to learn, apply and share new skills. However, I’ve heard the Coursera Stanford class in Machine Learning taught by Andrew Ng recommended so widely, I’m just going to doggedly sprint a marathon. I’m starting almost a week behind, working a busy job, trying to have a social life, and many other things…but darnit, I’m going to give this class my best shot. Hopefully I finish. 🙂

Okay, over-sharing complete. Let’s jump into a brief introduction of Machine Learning.

Machine learning, according to Andrew Ng (Chief Scientist at Baidu), is the science of getting computers to learn without being explicitly programmed.

Where is machine learning used in our lives?

Machine learning is employed a large number of actors. Here are a few examples:

  • Search engines, such as Bing, use machine learning to process MASSIVE amounts of data to quickly rank web pages in order of relevance, with limited human intervention.
  • Social networks, such as Facebook, use machine learning to recognize your friend’s faces for auto-tagging capabilities.
  • Email providers such as Apple Mail may employ spam filters that continuously learn to protect your inbox, your computer, and most importantly, your sanity.
  • Tech companies such as Amazon use natural language processing (NLP) to create conversational experiences and transactions with skills and services.
  • Entertainment companies such as Netflix use self-learning algorithms to recommend compelling new films and TV shows for those of you who binge watch

Where did machine learning come from?

Machine learning originated from a computer science field known as artificial intelligence. Long seen as a pipe dream from Star Trek (crass and careless reference, I know), machine learning is a practical and attainable segue to artificial intelligence, or machines and programs that contain some degree of self awareness.

This capability is a relatively new, yet a rapidly exploding field that grows as mathematical, statistical, hardware and software capabilities continue to compound and improve.

What follows is a better question still.

Where is machine learning headed?

Machine Learning in the future could look like a few different things (but not limited to this list, obviously!):

  • Predictive and preventative applications in engineering, medicine, and security
  • “Load bearing” performance in complex tasks, such as architecting, coding and programming self-driving cars
  • Coordinate machines and programs that study our behavior at our request and perform tasks, such as performing spring cleaning
  • Assistants or programs that are intelligent – able to optimize and independently solve problems on our behalf

Wrap-Up on the Machine Learning Introduction

That wasn’t so bad was it? We’ll follow soon with a more formal definition of Machine Learning and its various tranches of study. Cheers all.