Posts

DSC_0006 Zach Doty Intermediate GROUP BY SQL Skills Challenge Cover Photo

Intermediate SQL Skills Challenge: GROUP BY

Hey there SQL-ites! Wow, it’s been awhile since I’ve last posted. Work has been crazy busy again, and just life in general. Sure feels good to be back, learning again! I’m daringly dropping straight back into my learnings from where we left off…in April!? Crazy.

Anyway, let’s get back to brass tacks. Before life and work got really crazy for me, we covered:

Another quick recap note, we’ve been using the famous DVD rental training database for our work. On to the good stuff.

 

GROUP BY SQL Skills Challenge #1

Let’s say it’s time for quarterly reviews, who doesn’t love evaluations? ¯_(ツ)_/¯ Implement your knowledge of GROUP BY against the following problem:

We need to figure out how much revenue our employees have realized from DVD rentals, and how many transactions each handled.

 

GROUP BY SQL Skills Answer #1

Let’s talk through the problem and dissect it before presenting code. “A problem well-stated is a problem-half solved” – paraphrase of some smart person.

  1. We’re talking about revenue, so we’ll need to be dealing with the payment table.
  2. We’re evaluating employees (staff), SUM of revenue, and COUNT of transactions.
  3. If we’re aggregating this data, we’re GROUPing BY employee.
  4. We’re also ORDERing the employees BY who handled the most transactions.

That said, here’s the code:

SELECT staff_id, SUM(amount), COUNT(amount)
FROM payment
GROUP BY staff_id
ORDER BY COUNT(amount) DESC;

…with our results!

 

GROUP BY SQL Skills Challenge #2

Well done on your challenge! Here’s the second:

It’s time to do inventory, flashbacks of retail and restaurant wonder for all of us. 🙂

In the name of forecasting and planning, we need to figure out the average replacement cost of our movies, by rating.

 

GROUP BY SQL Skills Answer #2

Ok, let’s walk through our problem.

  1. We need to use the film database here, since we’re gathering information on the movies.
  2. We’re GROUPing our films BY rating
  3. We’re using an aggregate function to determine the average replacement cost of each rating.

Drum roll, here’s a winning code snippet:

SELECT rating, AVG(replacement_cost)
FROM film
GROUP BY rating
ORDER BY AVG(replacement_cost) DESC;

With the output:

 

Are there more challenges we should be covering? Yes. However, I’m trying to do better about getting more sleep these days. Unlike past SQL articles, it’s still (barely) before midnight. So we’ll take a quick breather, possibly update this article, but definitely keep moving forward. Cheers!

DSC_0069 Zach Doty Cover Photo for What is data science

What is Data Science?

Welcome back, campers! It’s been a minute (read:months) since I’ve last posted, and we’re back! (For now.)

Today’s topic, data science: supposedly the latest exploding field, critical to every enterprise.

Why is it important and relevant? The rise of big data has created a relatively untapped treasure trove of insight. However, it’s undeveloped! Further, the tapping of this insight requires a blended skill set which is currently in short supply in the market: the data scientist.

Who and what is a data scientist?

A data scientist is someone who finds new discoveries in data. They investigate hypotheses and look for meaning and knowledge within the data. They visualize the data by creating reports and looking for patterns. What distinguishes a data scientist from a traditional business analyst is the use of algorithms. Algorithms are one of the fundamental tools for data scientists. This requires mathematics knowledge, computer science savvy and domain knowledge.

What does it mean to be a data scientist?

A data scientist may handle open-ended questions such as, “Which customers are more likely to churn?” The data scientist would gather all the data, and run algorithms to find dependable patterns to improve the situation. Seems straightforward, yes? However, there are a range of misconceptions about data science and data scientist For example,  a data scientist may not necessarily be a developer-only or business intelligence analyst-only.

A data scientist will be able to combine both technical know-how and business domain knowledge into mathematics and statistics for maximum effect. That being said, true data scientists are extremely difficult to find and train. However, it may be possible to become a data scientist without expensive and time-consuming degrees, via focused tools and application training.

An oversimplified Venn diagram showing the makeup and value of a data scientist

An oversimplified Venn diagram showing the makeup and value of a data scientist

More Notes on Data Science

When considering data science from a managerial perspective, it’s important to understand the current broad allocation of the average data scientist’s time. An estimated 60-705 of a data scientist’s time is spent assembling and cleaning data, tasks which could be delegated to technical specialists, data integration specialists and so forth. (For example, text mining, SQL queries and so forth.)

If you’ve followed my site and blog lately, you’ll noticed I’ve lapsed a bit on posting. I’m trying to get back into sharing my education again, so stay tuned. Things have just been busy lately. 🙂

DSC_0045 Zach Doty Cover Photo Group By SQL Statement Function

GROUP BY SQL Statement

Introducing the GROUP BY SQL Statement in PostgreSQL

‘Ello SQL geeks! Welcome back to our SQL learning journey. We left off with a beginner SQL skills challenge and the aggregate SQL functions: MIN, MAX, AVG and SUM. Today we’re looking at the GROUP BY statement. We’ll learn about this function in PostgreSQL and walk through usage of this handy SQL statement.

 

About the GROUP BY SQL Statement/Clause

From my simple understanding, GROUP BY functions like a hybrid of the following:

  • SELECT DISTINCT keyword (If used without an aggregate function like SUM), and,
  • An Excel pivot table, rolling up aggregate figures (Count, Sum, Average, etc.) into unique rows

If you’re familiar with Excel Pivot tables, then you’ll recognize here the power of this function.

 

Let’s take a look at some examples to clarify.

 

First Look at Using the GROUP BY Function

To better illustrate the power of GROUP BY, we’ll first show its usage without aggregate functions. Consider the following:

If we query the address table of our sample database with a generic SELECT * FROM address; we get back an atrocious 605 rows of data. Aggregate and useless!

2017-04-27-001-GROUB-BY-Generic-SELECT-Query-Pitfall

In contrast, if we call the GROUP BY function, we’ll get back a cleaner output, with fewer rows – only unique values returned. While this is an incremental improvement to analyzing data, there’s much left to be desired.

2017-04-27-002-GROUP-BY-Without-Aggregate-Function

 

What’s missing here? How about that pivot table-esque functionality? This is where the power of using GROUP BY with aggregate functions gets awesome.

Using the GROUP BY SQL Statement with Aggregate Functions

As with most analysis, a single data point or data series rarely holds significant insight value on its own. Let’s drive home that point by leveraging the GROUP BY statement with the SUM aggregate function. Below, we compare the ratings of films in our sample database in aggregate by replacement cost. Perhaps this could serve in-store strategies for loss prevention.

SELECT rating, SUM(replacement_cost)
FROM film
GROUP BY rating;

2017-04-27-003-GROUP-BY-SUM-Aggregate-Function

If we extend this functionality to more real world examples, we could use the following for GROUP BY:

  • Grouping page-level / URL data to roll up clickstream analytics data
  • Large scale analysis of CRM data for customer segmentation analysis
  • Analyzing returns for financial data

The list could (and I’m sure it does) go on.

Let’s take this one step further and reduce potential future workload, by building sort functionality into our query. Below, we add a line to get most expensive ratings to least.

SELECT rating, SUM(replacement_cost)
FROM film
GROUP BY rating
ORDER BY SUM(replacement_cost) DESC;

2017-04-27-004-GROUP-BY-SUM-ORDER-BY-SUM

By the looks of this, no need to guard Land Before Time 8. 🙂

Extending our lesson: you can use the COUNT, AVG, and other aggregate functions to analyze as desired.

 

Wrap Up

Alright, this was a relatively gentle introduction into more advanced SQL functions. GROUP BY is a rather critical function, so in our next article, we’ll be doing yet another skills challenge. Joy!

Feel free to catch up on our other articles that help you learn PostgreSQL. Also, check out some how-to’s on developing Amazon Alexa skills, and a new series on getting started with Machine Learning. As always, please share with your colleagues and share thoughts in the comments below. Cheers.

SQL Aggregate Functions: Min, Max, Avg and Sum

Welcome back, SQL nerds! We’re back in action on the journey of learning SQL, after a beginner PostgreSQL skills challenge.

We’re reaching the end of basic functions and queries with this article. Based on what we’ve learned so far, we can do basic counting, filtering, sorting and pattern matching against PostgreSQL databases.

If you’re just tuning in, here’s the page on how to learn SQL, and the previous SQL article on the LIKE Statement.

Okay, enough jabber. Let’s jump in. The aggregate functions of MIN, MAX, AVG and SUM are our turning point into more complex SQL queries that involve concepts such as GROUP BY, among others.

At the same time, the functions on their own aren’t super complicated. Because we’re ass-u-ming you’re familiar with the general concepts of minimum, maximum, etc., we’re going to forgo conceptual and syntax explanations for demos.

 

AVG Aggregate Function

As we level up in SQL, we’re going to do less and less explaining / handholding / screenshots. That said, we’re going to explore our DVD rental data set for a table with a nice numerical component that would make good use of the functions.

We did a SELECT * FROM film LIMIT 15; to get a peek at the columns. For the purposes of this exercise, the replacement_cost column will do nicely.

To get the AVG:

SELECT AVG(replacement_cost) FROM film;

2017-04-17-001-AVG-Aggregate-PostgreSQL-Function

Using ROUND for Decimal Place Control

You’ll notice in the example above that we got 3 decimal places on what’s supposed to be a dollar amount. How do we fix that? Glad you asked. Meet the ROUND function.

We pass in the target value (average of replacement_cost) and mandate the number of decimal places we’d like returned. Below:

SELECT ROUND( AVG(replacement_cost), 2) FROM film;

2017-04-17-002-ROUND-for-AVG-Aggregate-PostgreSQL-Function

 

MIN Aggregate Function

To find the minimum value in a given column:

SELECT MIN(replacement_cost) FROM film;

2017-04-17-004-MIN-Aggregate-PostgreSQL-Function

 

MAX Aggregate Function

To find the maximum value in a given column:

SELECT MAX(replacement_cost) FROM film;

2017-04-17-003-MAX-Aggregate-PostgreSQL-Function

 

SUM Aggregate Function

To find the maximum value in a given column:

SELECT SUM(replacement_cost) FROM film;

2017-04-17-005-SUM-Aggregate-PostgreSQL-Function

 

Wrap-Up

Alright, that was a relatively quick article! Hopefully this was a reprieve from more involved sections in the past. We should find that as we continue to strengthen our core PostgreSQL  capabilities, these articles and our SQL queries should be easier and easier. If you found this article interesting, you might enjoy a new section on how to get started in machine learning. Cheers.

 

 

 

DSC_0007 Zach Doty Cover Photo for Beginner PostgreSQL Skills Challenge

Beginner SQL Skills Challenge!

Howdy, SQL geeks. Hope this post finds you swell!

Over the past few months, we’ve gained a ton of ground in learning SQL, or at least I have. 🙂

Let’s take a moment to:

  1. Test our knowledge of SQL skills learned thus far
  2. Start seeing SQL queries less as statements of code, and more as real world business challenges

In this article, we’ll have a recap plus three sections:

  • Recap of the training database we’ve been working with
  • General statements of each business problem
  • Hints and thoughts about how to approach each problem
  • Solutions to each problem

 

Recap: Our Training Database

Our training database is a best/old faithful. We’ve been using the surprisingly popular DVD rental database in a .tar file for our practice database.

Contained within this databases are various tables with fictitious information, including: customer information, film production information, business/pricing information and so forth.

In our challenges, we’ll execute various SQL queries to extract pieces of insight for business tasks. It’s assumed in this article that you’ve installed PostgreSQL via pgAdmin and have followed this article series so far, using the DVD rental training database.

Without further ado, let’s begin.

 

The SQL Challenges

Alright, here we go:

  1. How rentals were returned after July 17, 2005?
  2. How many actors have a last name that starts with the letter A?
  3. How many unique districts are represented in the customer database?
  4. Can you return the actual list of districts from challenge #3?
  5.  How many films have a rating of R and a replacement cost between $5 and $15?
  6. How many films have the word Truman somewhere in the title?

 

How to Approach the Challenges

Right, then. In this section, we’ll add some color commentary (read: hints) to our challenges. This should help you understand the mechanics of the solution, while ensuring you can’t see the answers all in one screen. 😉

 

Challenge 1: Rentals Returned After July 17, 2005

As with all challenges, a problem well stated is half (or more) solved. So let’s look at the high levels of the ask, and work our way down. We need information on rentals, so this means we’ll probably be querying the rentals table.

We would want to first examine the rentals table in a concise manner by doing:

SELECT * FROM rental LIMIT 5;

Once you’ve surveyed the table, we really only need one column returned (pun not intended) and we only want the sum figure of returns, where (HINT!!) the return date was after (think a logical operator here) July 17, 2005.

 

Challenge 2: Actors That Have a Last Name Beginning with “A”

Like our first challenge, let’s work from the “top down”. We need actor information, so querying the actor table would be a great place to start. Similar to last time, we need a count of values matching a condition. The difference versus challenge #1  is we need to find match a pattern like or such as an actor’s last name that begins with the letter A.

 

Challenge 3: Number of Unique Districts in the Customer Database

The title and description could cause some confusion here. You may need to do some basic SELECT * FROM table_name LIMIT X; queries to make sure you’ve got the right table. Once you do, we’re looking for an amount of distinct values in the database. Order of operations matters.

 

Challenge 4: Returning the Actual Lists of Districts from Challenge #3

Not much to hint at here – getting challenge #3 is the key here. You’ll really only be simplifying the correct query in challenge #3 to get the correct answer here.

 

Challenge 5: Cheap, (Mildly) Naughty Films

This one might be the longest query yet in this challenge. So we’re looking up film information, thus should know which table to query. We’re returning a value where a certain rating must be returned, and (HINT) we need to layer in one more lens of qualification. That lens dictates we specify a range between (cough, hint!) two values.

 

Challenge 6: Where in the World are Films Containing “Truman”?

This challenge is more of a recency test than retention of older concepts. You’ll need to employ pattern matching again for this business challenge/query to find titles that have some match like Truman in the title.

 

 

Challenge Solutions

Is that your final answer? Below are the queries, with screenshots of what I did.

 

Solution 1: Rentals Returned After July 17, 2005

SELECT COUNT(return_date) FROM rental
WHERE return_date > ‘2005-07-17’;

2017-04-15-001-Challenge-1-Sol-Count-From-Where

 

Solution 2: Actors That Have a Last Name Beginning with “A”

SELECT COUNT(*) FROM actor
WHERE last_name LIKE ‘A%’;

2017-04-15-002-Challenge-2-Sol-Count-From-Where-Like

 

Solution 3: Number of Unique Districts in the Customer Database

SELECT COUNT(DISTINCT(district)) FROM address;

2017-04-15-003-Challenge-3-Sol-Count-Distinct

 

Solution 4: Returning the Actual Lists of Districts from Challenge #3

SELECT DISTINCT(district) FROM address;

2017-04-15-004-Challenge-4-Sol-Select-Distinct

 

Solution 5: Cheap, (Mildly) Naughty Films

SELECT COUNT(*) FROM film
WHERE rating = ‘R’
AND replacement_cost BETWEEN 5 AND 15;

2017-04-15-005-Challenge-4-Sol-Count-From-Where-Between-And

 

Solution 6: Where in the World are Films Containing “Truman”?

SELECT COUNT(*) FROM film
WHERE title LIKE ‘%Truman%’;

2017-04-15-006-Challenge-4-Sol-Count-Where-Like-Wildcard

 

Wrap Up

Well done for completing these challenges! You shall indeed pass. 🙂

Soon, we’ll be covering aggregate SQL functions, such as MIN, MAX, AVG and SUM.

If you’re just joining us, here’s a running list of our articles so to date (4/16/2017):

 

DSC_0064 Zach Doty Unsupervised Machine Learning Intro Cover Photo

Unsupervised Learning Introduction: Machine Learning Essentials

Howdy, machine learning students! Today we’re going to introduce the concept of unsupervised machine learning algorithms.

Quick Recap: Supervised Learning

Before we jump in, let’s quickly recap our last article introducing supervised machine learning algorithms. This will give us the appropriate context for unsupervised learning.

In supervised machine learning problems, we supply pre-labeled data to the algorithm. By supplying data that’s already correctly labeled, we ask the algorithm to further predict (regression) or label (classification) new data.

2017-04-11-004-Multiple-Input-Classication-Machine Learning

 

Unsupervised Machine Learning = Unlabeled Data

The most immediate and prominent difference  for unsupervised learning is the data. Above, we gave the algorithm “a boost” by supplying the intended “right” answers in the data. Below, in an unsupervised machine learning problem, there are no right answers…yet.

2017-04-15-001M-Unsupervised-Machine-Learning-Problem-Data

We’ve supplied the algorithm with data in the problem, but it’s provided without labels or “answers”. We are mandating that the algorithm discover structure and infer patterns/labels on its own. We could also compare the above example to a clustering problem.

So in unsupervised learning, we supply a large amount of unlabeled data, without explicitly identified form or structure. We ask the algorithm to come up with ideas of structure and segmentation on its own.

Some additional applications of unsupervised learning could include:

  • Market segmentation of massive transaction data
  • Large scale social networking data
  • Astronomical data analysis
  • Large scale market data
  • Mass audio/voice analysis
  • Large scale gene clustering

 

Wrap Up

That was a bit of a quick one! The challenge with some these technical subject matter areas is sometimes we have limited room to run before going off into the technical weeds. This is one of those areas. Next, we’ll be covering some key concepts in the areas of machine learning model representation, cost function and parameter learning. Don’t worry too much about those yet, we’ll take it step by step. 🙂
As always, feel free to follow my other journeys of learning PostgreSQL, learning how to develop Amazon Alexa Skills, learning how to get started in algorithmic trading, JavaScript for beginners…and more to come soon! Cheers.

DSC_0013 Zach Doty Cover Photo for Introduction to Machine Learning

An Introduction to Machine Learning

Howdy! This is an abrupt interruption to our regularly scheduled programming of SQL lessons, Amazon Alexa Skill development and Algorithmic trading. For those readers who don’t personally know me, I’m on a quest/streak to level up as a technologist.

Getting around to the point, I’ve been taking self-paced courses in varying forms to learn, apply and share new skills. However, I’ve heard the Coursera Stanford class in Machine Learning taught by Andrew Ng recommended so widely, I’m just going to doggedly sprint a marathon. I’m starting almost a week behind, working a busy job, trying to have a social life, and many other things…but darnit, I’m going to give this class my best shot. Hopefully I finish. 🙂

Okay, over-sharing complete. Let’s jump into a brief introduction of Machine Learning.

Machine learning, according to Andrew Ng (Chief Scientist at Baidu), is the science of getting computers to learn without being explicitly programmed.

Where is machine learning used in our lives?

Machine learning is employed a large number of actors. Here are a few examples:

  • Search engines, such as Bing, use machine learning to process MASSIVE amounts of data to quickly rank web pages in order of relevance, with limited human intervention.
  • Social networks, such as Facebook, use machine learning to recognize your friend’s faces for auto-tagging capabilities.
  • Email providers such as Apple Mail may employ spam filters that continuously learn to protect your inbox, your computer, and most importantly, your sanity.
  • Tech companies such as Amazon use natural language processing (NLP) to create conversational experiences and transactions with skills and services.
  • Entertainment companies such as Netflix use self-learning algorithms to recommend compelling new films and TV shows for those of you who binge watch

Where did machine learning come from?

Machine learning originated from a computer science field known as artificial intelligence. Long seen as a pipe dream from Star Trek (crass and careless reference, I know), machine learning is a practical and attainable segue to artificial intelligence, or machines and programs that contain some degree of self awareness.

This capability is a relatively new, yet a rapidly exploding field that grows as mathematical, statistical, hardware and software capabilities continue to compound and improve.

What follows is a better question still.

Where is machine learning headed?

Machine Learning in the future could look like a few different things (but not limited to this list, obviously!):

  • Predictive and preventative applications in engineering, medicine, and security
  • “Load bearing” performance in complex tasks, such as architecting, coding and programming self-driving cars
  • Coordinate machines and programs that study our behavior at our request and perform tasks, such as performing spring cleaning
  • Assistants or programs that are intelligent – able to optimize and independently solve problems on our behalf

Wrap-Up on the Machine Learning Introduction

That wasn’t so bad was it? We’ll follow soon with a more formal definition of Machine Learning and its various tranches of study. Cheers all.

DSC_0104 Zach Doty Cover Photo for Learning LIKE SQL Statement

The LIKE Statement: SQL Statement Fundamentals

Howdy folks! We are overdue for another installation of SQL learning. I’ve slept a few times since the past couple of articles on how to learn SQL. Previously, we talked about the IN Statement, BETWEEN statement, and ORDER BY clause.

In this article, we’ll learn how to execute the LIKE statement in SQL queries. Let’s jump in.

 

About the LIKE Statement & Why it’s Important

Have you ever worked with a data set that’s overwhelmingly large  or complex? Or overwhelmingly large and complex? Sometimes, you need to find data, but can’t recall the exact string or values for a lookup. Or, perhaps, you’re working with a messy data output from say, Google Keyword Planner that groups a range of close variants into one value?

Say you’re looking for values related to designer clothing and designer clothes. Without a better solution, the most probable solution for you is to do a bunch of sorting, filtering, classifying and other data sleuthing at great expense to time and sanity.

The LIKE statement exists to help with the debacle of only having / knowing  part of the lookup criteria you need, courtesy of pattern matching.

PostgreSQL and many other SQL engines/platforms support the LIKE statement, which functions a bit like the below. (Pun not intended.)

 

SELECT keyword, search volume

FROM table

WHERE keyword LIKE ‘cloth%’

 

The above tells pgAdmin / PostgreSQL to get the keyword and search volume columns from table, where the keyword values match values that begin with ‘cloth’ and are followed by anything else, the percent sign. The combination of calling out a text string with an operate is known as a pattern.

When you execute the LIKE statement in a SQL query, pgAdmin will begin reading through the table rows to see if the pattern you’ve specified returns any matches. For the season marketing technology folks, this functionality sure does resemble regex in some ways.

However, there are some differences.

  • Here, instead of the * character being wildcard, the % sign serves as a wildcard matching all characters.
  • If you want to match a single character, the underscore character is used.

 

LIKE Statement Syntax & Examples

Let’s try some examples. Below, we’ll call on the faithful DVD rental practice database, and run a query for customers that have first names like Jen. (Jennifer, Jenny, etc.) Our below code produces the following result.

SELECT first_name,last_name

FROM customer

WHERE first_name LIKE ‘Jen%’;

2017-03-30-001-LIKE-SQL-Statement-Example

 

That being considered, there are other ways we can use the like statement. Above, we used a wildcard to match any endings to a particular string.

Conversely, we could execute a SQL query that specifies a certain ending value, with the wildcard preceding. If we extend that example to such a query below, we should see the following result:

SELECT first_name,last_name

FROM customer

WHERE first_name LIKE ‘%y’;

2017-03-30-002-LIKE-SQL-Statement-Example

 

Above, we’ve flipped the tables so we capture every possible beginning condition under this pattern. Also important to note, the patterns aren’t limited beginnings or ends. You can use this wildcard in the middle, etc. Consider the following:

SELECT first_name,last_name

FROM customer

WHERE first_name LIKE ‘%er%’;

2017-03-30-003-LIKE-SQL-Statement-Example

 

Now, on top of all this awesomeness, realize we’ve been using it as a matching filter. We can also employ the NOT LIKE syntax to exclude values meeting the pattern we’ve specified.

Let’s mix things up a bit. We mentioned a second type of pattern matching character that we haven’t used yet: the underscore.

SELECT first_name,last_name

FROM customer

WHERE first_name LIKE ‘_her%’;

2017-03-30-004-LIKE-SQL-Statement-Example

 

Above, we’ve made a similar ask. However, instead of requesting all possible matches, we’ve mandated SQL only return the ‘er’ string that begins with ‘h’.

To throw you a quick curveball, it’s worth noting the LIKE statement is case sensitive in its matching. Could be bad, could be good, could be neither. However, there’s a way for you to force case insensitivy on the queries. The difference in your statement appears relatively minor. Instead of using a function that calls LIKE or NOT LIKE, you’ll use ILIKE.

 

Wrap-Up

Hope you found this useful! Stay tuned for more SQL learnings and application. If you’re new here, visit the page on how to learn SQL. If you’re interested in more educational material, check out our ongoing series of how to develop Amazon Alexa voice search skills, and getting started with algorithmic trading. Cheers!

DSC_0163 Zach Doty Cover Photo for ORDER BY SQL Clause

ORDER BY Clause: SQL Statement Fundamentals

Welcome back to our SQL learning journey! It’s been a week and a half since my last post on using LIMIT. Work got crazy and I got the flu! 🙁 But we’re back in action. Today, we’ll delving deeper into SQL statements in PostgreSQL: ORDER BY.

Let’s jump in. Why would you need a statement that orders data? Whenever you query data from a table, PostgreSQL will by default return the rows in the order they were inserted into the table. (Read: not the order you want.)

To sort the result set from your SQL query, you can use the ORDER BY clause in the SELECT statement and specify a certain ascending or descending order.

Sample ORDER BY Clause Syntax

Here’s an example of the ORDER BY clause would look like within a SELECT statement.

SELECT column_1, column_2

FROM table_name

ORDER BY column_1 ASC / DESC;

Some important notes for the ORDER BY clause:

  • Specify the column you want to sort by with the ORDER BY clause
    • If you sort the results by multiple columns, use a comma to separate between the two columns
  • Use ASC to sort the results in ascending order
  • Use DESC to sort the results in descending order
  • Should you leave the ORDER BY clause blank, it will use ASC (ascending) by default

ORDER BY Clause Examples in SQL Statements

Alright, first up. We’ll do a basic SELECT statement, adding both ORDER BY and LIMIT clauses. Code and screen shot below. The query should select the first and last name columns from the customer table, ordered by last name ascending (A > Z), returning only the first 10 rows.

SELECT first_name,last_name  FROM customer

ORDER BY last_name ASC

LIMIT 10;

2017-02-16-001-ORDER-BY-SQL-Statement-Example

 

Let’s try another example. What if we want to do an advanced / multiple sort? Let’s try it out, and change it up ever so slightly from the first sample query.

SELECT first_name,last_name

FROM customer

ORDER BY first_name ASC,

last_name DESC;

2017-02-16-002-ORDER-BY-SQL-Statement-Example-Multiple

If we scroll down to the first set of duplicate first names, we’ll see the last name has been presented in descending order (Z > A).

More Details About the ORDER BY Clause

Did you know? In PostgreSQL, you can ORDER BY columns that aren’t explicitly selected within the SELECT statement? E.g. We could only select first and last name, but order by their address_id value. Interesting, yes? Important caveat, other SQL programs, such as MySQL, may not let you do this.

Below:

SELECT first_name FROM customer

ORDER BY last_name ASC;

2017-02-16-003-ORDER-BY-SQL-Statement-Example-Other-Sort

Wrap-Up

Thanks for joining me and hopefully you’ve learned the essentials for the ORDER BY clause. Feel free to check out the entire journey on how to learn SQL, thanks!

Restoring a SQL Database with Table Schema Only in pgAdmin x PostgreSQL

Howdy! Welcome back to our shared journey of learning SQL. Last time, we learned about creating, deleting and completely restoring SQL databases in pgAdmin. Today, we’ll learn about how to restore a database, but only its table schema.

Specifically, we’ll restore the table names and preferences for types of data within those tables. However, the actual data itself won’t be ported in.

Think of it as taking your house or apartment, and recreating, but you don’t move in with the furniture. (Maybe a sibling instead? 🙂 ) According to the material I’m working through, this method of database restoration is very common and is something we should have down pat.

 

Database Table Schema-Only Restoration, Method 1

An easy method to start this is to right click on the Databases header near the top of the file tree, and to select “Create” > “Database”. With a fresh new database, we’ll have flexibility to do some more management on the “front” side of things. (Knowing I may be abusing terminology a bit, but makes sense to me while writing this.)

 

2017-01-21-001-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-P1

For this example, I’ve finished the new database creation by naming (“OnlySchema”) and saving a new database. Below, you can see the new database in the file tree. Also, if we click through the tree as such, “Schemas” > “public” > “Tables”, we’ll notice there are no tables! (Compare that path exploration to the dvdrental database tables, where you can find 15 tables.)

 

2017-01-21-002-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-P2       2017-01-21-003-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-p3

Anyway, let’s get on with restoring table schema only!

  1. Right click on “OnlySchema” and select “Restore”
  2. Select the “Custom or tar” option for the Format field
  3. Select the file via the dialogue, or paste in your file path
    • Up to this point, you should notice we’ve taken the exact same steps for a full database restore. However, #4 is where things are slightly different. Pay attention!
  4. As shown below, click “Restore Options”, and activate the radio button for “Only schema” to yes
  5. Click “Restore” and refresh!

 

2017-01-21-004-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-p4

After the refresh, we should see something like below, where if we select the tables option and view “Properties”, we’ll see 15 empty named tables.

 

2017-01-21-005-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-p5

 

Method 2: Schema-Only Restoration onto a Database with existing tables, data

What if we’re working with a database that contains existing tables and data? And suppose we need to restore only the schema? Perhaps an error was committed in formatting / management and must be corrected.

Fortunately, this method of restoration is extremely similar to Method 1. For this scenario, there’s one added step toward the end:

  1. Right click on “OnlySchema” and select “Restore”
  2. Select the “Custom or tar” option for the Format field
  3. Select the file via the dialogue, or paste in your file path
  4. Click “Restore Options”, and activate the radio button for “Only schema” to yes
    • Here’s our jump off point, the next step is what differs from Method 1.
  5. Scroll down the dialogue box slightly. You should see a field and radio button for “Clean before restore”. Activate the radio button to “Yes”
  6. Click “Restore” and refresh!

 

2017-01-21-006-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-p6

After running the restore job and refreshing, we can verify the Schema Only and data clean prior to restoration occurred correctly. Below, we can click through the file tree down from “dvdrental” > “Schemas” > “public” > “Tables” and check the table properties to see that there are zero (0) rows of data.

 

2017-01-21-007-pgAdmin4-PostgreSQL-Restore-Database-Table-Schema-M1-p7

 

Wrap Up

I do hope these articles are serving a useful introduction to navigating pgAdmin, and getting familar with the foundations of PostgreSQL and databases. In the forthcoming articles, we’ll start learning about basic SQL syntax. To keep track of all the shared SQL posts and learnings, visit the SQL Education page for a list of articles to date. Cheers!