Posts

DSC_0064 Zach Doty Unsupervised Machine Learning Intro Cover Photo

Unsupervised Learning Introduction: Machine Learning Essentials

Howdy, machine learning students! Today we’re going to introduce the concept of unsupervised machine learning algorithms.

Quick Recap: Supervised Learning

Before we jump in, let’s quickly recap our last article introducing supervised machine learning algorithms. This will give us the appropriate context for unsupervised learning.

In supervised machine learning problems, we supply pre-labeled data to the algorithm. By supplying data that’s already correctly labeled, we ask the algorithm to further predict (regression) or label (classification) new data.

2017-04-11-004-Multiple-Input-Classication-Machine Learning

 

Unsupervised Machine Learning = Unlabeled Data

The most immediate and prominent difference  for unsupervised learning is the data. Above, we gave the algorithm “a boost” by supplying the intended “right” answers in the data. Below, in an unsupervised machine learning problem, there are no right answers…yet.

2017-04-15-001M-Unsupervised-Machine-Learning-Problem-Data

We’ve supplied the algorithm with data in the problem, but it’s provided without labels or “answers”. We are mandating that the algorithm discover structure and infer patterns/labels on its own. We could also compare the above example to a clustering problem.

So in unsupervised learning, we supply a large amount of unlabeled data, without explicitly identified form or structure. We ask the algorithm to come up with ideas of structure and segmentation on its own.

Some additional applications of unsupervised learning could include:

  • Market segmentation of massive transaction data
  • Large scale social networking data
  • Astronomical data analysis
  • Large scale market data
  • Mass audio/voice analysis
  • Large scale gene clustering

 

Wrap Up

That was a bit of a quick one! The challenge with some these technical subject matter areas is sometimes we have limited room to run before going off into the technical weeds. This is one of those areas. Next, we’ll be covering some key concepts in the areas of machine learning model representation, cost function and parameter learning. Don’t worry too much about those yet, we’ll take it step by step. 🙂
As always, feel free to follow my other journeys of learning PostgreSQL, learning how to develop Amazon Alexa Skills, learning how to get started in algorithmic trading, JavaScript for beginners…and more to come soon! Cheers.

Supervised Learning & Its Types: Machine Learning Essentials

Welcome back, machine learning geeks! Let’s delve deeper into our journey of mastering machine learning. In the previous article, we looked at both informal and technical definitions of machine learning.

 

We also looked at the two major types of machine learning algorithms, A) supervised machine learning algorithms, and B) unsupervised machine learning algorithms. We also mentioned reinforcement learning and recommender systems, but won’t spend as much time there.

 

Let’s jump in!

 

Introduction to Supervised Learning

Supervised machine learning algorithms are used when you:

  1. Have a set of known, correctly labeled data
  2. Are looking to predict a continuous value output

 

Let’s visualize by looking at a digital marketing example.

 

Perhaps we are digital marketers looking to forecast or predict how much time and effort we’ll need to spend on outreach and content promotion for a particular webpage and target ranking.

 

Say we’ve gathered some data about website pages with:

  • Their rank for a given keyword
  • The amount of unique linking domains pointing to each page

 

Such a distribution of data might look like the below. It demonstrates a trend, but right now, we don’t have a single linear function that will “connect all the dots”.

 

2017-04-09-001-Supervised-Machine-Learning-Regression-Example

 

This is a great example for the first major subdivision of supervised machine learning algorithms:

 

Regression Learning Problem

Off the cuff, there are a couple of different ways in which we might try to solve this problem. Both solutions involve using the “labeled” data to predict a line of best fit, which, on the whole, minimizes the distance between the line and all the points. If we have a simple slope, predictions could be precarious at best, and misrepresentative on the other end of the spectrum.

 

We could also instruct our programs to fit a quadratic equation to the data (read: not a straight line.) In our slightly altered example here, the difference could be significant.

 

2017-04-11-002-Regression-Problem-Linear-Quadratic-Comp

 

At this point in time, we won’t focus on whether we should pick a linear or quadratic line for the regression output. However, it is worth noting that the two different methods could yield widely varying results.

 

Say we wanted to get a webpage ranking in position 5 for this given study, a linear example would have us preparing to secure links from ~180 unique domains. If we decided on the quadratic solution, we could be looking at significantly less effort, perhaps ~125 unique linking domains?

 

Classification Learning Problem

Insert smooth segue here and please forgive my lazy writing at this time. 🙂

 

The next major subdivision of supervised machine learning algorithms is known as a classification problem. Let’s use another example.

 

We are analyzing a large user study of an Amazon Alexa Skill in development. Perhaps we are classifying a particular interaction with the skill by success or failure (1 or 0), and plotted against the measured spoken word count for the given interaction.

 

Visualized, this data might look like the below.

 

2017-04-11-003-Supervised-Classification-Machine-Learning

 

In this example with (shockingly 🙂 ) clean data, we might want to guide development efforts in providing the best sample phrases/interactions for the skill. Perhaps, we would want to measure the probability an interaction four (4) spoken words long will be successful. This is known as a classification learning problem.

 

Above, we examined only one factor in determining a probability. However, we aren’t limited to examining just one parameter.

 

Let’s consider the following, perhaps we are an e-commerce retailer or digital business. A frustration for many marketers is the “one and done” (self explanatory) customer that represents minimal customer lifetime value for the brand.

 

It would certainly behoove us to identify these customers and provide them with specialized messaging or a compelling promotion offer to keep them engaged and transacting with the brand.

 

Below, we could have a sample data set to which we fit a line, and thereby predict based on a certain age and AOV (average order value) profile whether a particular transaction is likely or not to be a “one and done” consumer.

 

2017-04-11-004-Multiple-Input-Classication-Machine Learning

 

In practice, we could potentially use a number of inputs to help solve machine learning problems. There are even methods to use an “unlimited” number of inputs- support vector machines. But only a tease for now!

 

Wrap-Up

Our first major classification of machine learning algorithms is supervised learning! In supervised learning, we assist the program by supplying the correct answers in part, and then mandating the program supply correct values via regression or classification, the two major categories of supervised machine learning problems.

 

2017-04-11-005-Major-Supervised-Learning-Algos

 

Moving forward, we’ll dive deeper into one variable linear regression (dare we say the hello world of machine learning?) as well as fleshing other key concepts and methods. If you’re interested in this, you might also be interested in learning PostgreSQL, how to develop Alexa skills, or algorithmic trading. Take care.

DSC_0013 Zach Doty Cover Photo for Introduction to Machine Learning

An Introduction to Machine Learning

Howdy! This is an abrupt interruption to our regularly scheduled programming of SQL lessons, Amazon Alexa Skill development and Algorithmic trading. For those readers who don’t personally know me, I’m on a quest/streak to level up as a technologist.

Getting around to the point, I’ve been taking self-paced courses in varying forms to learn, apply and share new skills. However, I’ve heard the Coursera Stanford class in Machine Learning taught by Andrew Ng recommended so widely, I’m just going to doggedly sprint a marathon. I’m starting almost a week behind, working a busy job, trying to have a social life, and many other things…but darnit, I’m going to give this class my best shot. Hopefully I finish. 🙂

Okay, over-sharing complete. Let’s jump into a brief introduction of Machine Learning.

Machine learning, according to Andrew Ng (Chief Scientist at Baidu), is the science of getting computers to learn without being explicitly programmed.

Where is machine learning used in our lives?

Machine learning is employed a large number of actors. Here are a few examples:

  • Search engines, such as Bing, use machine learning to process MASSIVE amounts of data to quickly rank web pages in order of relevance, with limited human intervention.
  • Social networks, such as Facebook, use machine learning to recognize your friend’s faces for auto-tagging capabilities.
  • Email providers such as Apple Mail may employ spam filters that continuously learn to protect your inbox, your computer, and most importantly, your sanity.
  • Tech companies such as Amazon use natural language processing (NLP) to create conversational experiences and transactions with skills and services.
  • Entertainment companies such as Netflix use self-learning algorithms to recommend compelling new films and TV shows for those of you who binge watch

Where did machine learning come from?

Machine learning originated from a computer science field known as artificial intelligence. Long seen as a pipe dream from Star Trek (crass and careless reference, I know), machine learning is a practical and attainable segue to artificial intelligence, or machines and programs that contain some degree of self awareness.

This capability is a relatively new, yet a rapidly exploding field that grows as mathematical, statistical, hardware and software capabilities continue to compound and improve.

What follows is a better question still.

Where is machine learning headed?

Machine Learning in the future could look like a few different things (but not limited to this list, obviously!):

  • Predictive and preventative applications in engineering, medicine, and security
  • “Load bearing” performance in complex tasks, such as architecting, coding and programming self-driving cars
  • Coordinate machines and programs that study our behavior at our request and perform tasks, such as performing spring cleaning
  • Assistants or programs that are intelligent – able to optimize and independently solve problems on our behalf

Wrap-Up on the Machine Learning Introduction

That wasn’t so bad was it? We’ll follow soon with a more formal definition of Machine Learning and its various tranches of study. Cheers all.

Building an Interactive Alexa Quiz Skill, Part 2

Disclaimer: this was typed late at night on a tired mind. Please excuse typos, convention errors, and generally poor writing. 🙂

Howdy, Alexa nerds! Welcome back to our journey in learning Amazon Alexa Skill Development. Quick funny aside, would you care to guess my most common use of the Echo? It’s to play looong Spotify playlists that are basically background noise to help our new dog when Hannah & go to the gym or meet friends. Anyway!

Let’s jump back in. The previous article covered setting up an AWS Lambda function for the Alexa Skill Service. Now, we’ll be working more with the Skill interface. See below for the conceptual overview, or an early article on building Alexa skill interfaces for a basic fact skill.

2017-03-07-001-Alexa-Skill-Interface-Develpoment-Framework

 

Working in the Amazon Developer Console: Alexa Skills Kit

You probably know the drill now, log in to the Amazon Developer console. Once you’ve logged in, select the “Alexa” menu item from the home screen, then choose the “Alexa Skills Kit” Option.

2017-03-27-B-001-Alexa-Quiz-Skill-Create-Alexa-Skill-Interface-Start

If you’ve previously published or started development of skills, you should see them listed on this screen. Now, click, “Add a New Skill”. We should be looking at a very familiar screen here. 🙂

Add/edit the following:

  • Language (assuming you’ll leave the English US default here)
  • Name of the Skill displayed in the Alexa app and store
  • Invocation name users will speak to start your skill

Click Save and Next to proceed.

2017-03-27-B-002-Alexa-Quiz-Skill-Create-Alexa-Skill-Information

 

Working with the Interaction Model

Here comes the tough part, more copy and paste! Okay, sarcasm and humor doesn’t always translate well via text. We’re going to continue to lean fairly heavily on Amazon’s examples here to get ourselves familiarized with the more advanced concepts of intent schema and slot types.

That caveat aside, head back to the files we originally downloaded, but this time, we’re interested in the speechAssets folder and its contents:

  • json
  • Sample utterances (text document)

First, let’s open up the Intent Schema JSON file in our text editor of choice. Below, a look at what you should approximately be seeing. Copy and paste the entirety of the JSON file into the Intent Schema field of the Interaction Model tab.

2017-03-27-B-003-Alexa-Quiz-Skill-Create-Alexa-Skill-Intent-Schema-JSON

Audible: Our First Encounter with Custom Slot Types

Alright, no smooth segue here. We’re having the first encounter with what’s known as custom slot types.

If you were to try and save the skill progress so far, you’ll receive an error message from the developer console that says something like, “Error: There was a problem with your request: Unknown slot type ‘LIST_OF_ANSWERS’ for slot ‘Answer’. Why is that?

2017-03-27-B-004-Alexa-Quiz-Skill-Create-Alexa-Skill-Custom-Slot

If you take a closer look at the Intent Schema JSON file, you’ll notice that  most of the intents are built-in Amazon intents. E.g., “intent”: “AMAZON.RepeatIntent”. The “AnswerIntent” looks nothing like the built-in Amazon intents. Instead, we see a name, “Answer” and type, “LIST_OF_ANSWERS” that was so delicately referenced in the error message.

So how do we remedy this situation? We use the information presented to us in the error message and the JSON file to work our way over this issue. You’ll likely note under the custom slot types mentions “Enter Type”.

2017-03-27-B-005-Alexa-Quiz-Skill-Create-Alexa-Skill-Custom-Slot-Values

Match that information up with our error message and the JSON code, and we’ll enter, “LIST_OF_ANSWERS”. In the values section, we’ll enter on separate lines: 1, 2, 3, and 4. I’ll note here for clarity, that this essentially corresponds to the A/B/C/D multiple choice functionality of the quiz. We’ll see this in greater detail in a bit.

Okay, click “Add” as highlighted above, then click “Save”. Next, return to your files and open up the Sample Utterances text file. You should see something like the below.

2017-03-27-B-006-Alexa-Quiz-Skill-Create-Alexa-Skill-Sample-Utterances

You’ll note it’s quite a bit different than the previous, simple, fact-dispensing Skill we previously built. Take note of the {Answer} sample utterance. These are the pieces of dynamic input and interaction coming together into an Alexa Skill. We’ve defined a custom interaction outside of Amazon’s standard functions, and specified a range of acceptable answers the user can give us. That whole structure meets the user experience here, called in by the {Answer} slot name and custom slot type.

Enough conceptual babble. Copy and paste the sample utterances text into the developer console! Click Save beneath the sample utterances, and click Next.

2017-03-27-B-007-Alexa-Quiz-Skill-Create-Alexa-Skill-Sample-Utterances-List

 

Continuing the Skill Interface Build-out

Alright, so far, we’ve accomplished the following:

  • Provided basic skill information about our new skill
  • Specified details about the interaction model, including;
    • Intent Schema
    • Custom Slot Type
    • Acceptable/specified values for the custom slot type
    • Sample utterances

Next, we need to fill in some simple but crucial configuration details. Remember the ARN we generated by setting up the AWS Lambda function in the previous article? You need it here. Below you can see:

  1. I’ve selected the recommended endpoint type of AWS Lambda ARN
  2. Selected my geographic region of North America and,
  3. Pasted in the full ARN

I’m not going to work with account linking yet, because honestly, it looks really darn complicated and its well past midnight as I type this. Soon. 🙂 Click next and proceed to the testing tab!

In the testing tab, you should first see that the skill is enabled for testing on your account. You can:

  • play back responses from Alexa in the voice simulator to test pronunciation, etc
  • More importantly, use the service simulator to run a sample utterance, and see if your skill actually works.

2017-03-27-B-008-Alexa-Quiz-Skill-Testing-Alexa-Skill

Above, we can see the response to our sample utterance asking SEO Quiz returns as expected. Woohoo! Also, did you know the Alexa voice simulator automatically bleeps out most curse words? Did you know you can kind of work around that by putting extra vowels in the word? I digress. (It’s almost 1 am writing this now, productivity on the rise!) When you’re satisfied, click Next.

We’re getting close! Time to enter some publishing information. I’ll leave the first few sections to you: Category, Sub-Category, Testing Instructions, Country/Region availability, Short and Full skill descriptions.

Now, in the example phrases, I provided some updates to the sample utterances, namely to the starting Intent. Below, see the example phrases of “Alexa open SEO Quiz” and so forth. The “gotcha” here that set me back on my first skill is that the example phrases must be derived from your sample utterances.

2017-03-27-B-009-Alexa-Quiz-Skill-Testing-Alexa-Skill

Upload your 108×108 and 512×512 pixel icon images, click Next and submit the requisite privacy & compliance information. Done!

 

Wrap-Up

So, we’re mostly done, not completely done. The part for usto do now is customizing the template code in your AWS index.js file. Ideally, I would prefer a more eloquent closing, but it’s late, will have to wait for another time. Look after each other.

 

DSC_0002 Zach Doty Cover Photo for Interactive Alexa Quiz Skill Development

Building an Interactive Quiz Alexa Skill, Part 1

Hello Alexa geeks! Welcome back to our journey of learning how to develop Amazon Alexa Skills for the Echo and more. Last time, we completed the build process for our first simple “fact-dispensing” Alexa Skill.

In this article, we’ll start the process for a skill that accepts user input in the form of a quiz, fun! If you recall from our first skill, there are two parts to skill development:

  1. The Skill service development, in AWS (Lambda)
  2. The Alexa Skill interface details through the Amazon / Alexa Developer Console

 

2017-03-01-001-Alexa-Skill-Develpoment-Framework

 

Getting Started in AWS Lambda

You’ll notice as we progress from our early articles, there will be less detail paid to more basic instructions, such as our first! First, log in to the Amazon AWS portal.

Navigate to the Lambda service. If you’re the casual developer just working in this course, odds are the Lambda link will be near the top of screen under “Recently Visited Services”. Once you’ve clicked through, click, “Create a Lambda Function”.

2017-03-27-001-Alexa-Quiz-Skill-Create-AWS-Lambda-Function

On the next screen, you should see something like “Select blueprint” (Note: at the rate of change Amazon has been pursuing, this screen could change, even in a matter of weeks!) Click the “Blank Function” option, we’re starting this one from scratch!

2017-03-27-002-Alexa-Quiz-Skill-Create-Blank-AWS-Lambda-Function

The next screen should be, “Configure triggers”. Click inside the gray dash-outlined box, and select, “Alexa Skills Kit” from the dropdown menu. Click next!

2017-03-27-003-Alexa-Quiz-Skill-Configure-Alexa-Skills-Kit-Trigger

 

AWS Lambda Function Configuration for Alexa

Now we should be able to configure the basics of our function. Enter the following:

  • Function name
  • Description

The default runtime environment should be Node.js 4.3. If not, change it to Node.js 4.3.

(Note: Amazon just introduced support for Node.js 6.10, so that may be the preferred format going forward!) Will try to provide an article update, should that be the case.

2017-03-27-004-Alexa-Quiz-Skill-Configure-Alexa-Function

Onward! Now, we need to upload some code to this burgeoning success. Throwback time, do you remember the files we downloaded in one of the first articles? Time to go back to them again. In your folder of numbered skill templates, go to “2-reindeerGames”, “src” folder and safely open the index.js file in your text editor of choice.

2017-03-27-005-Alexa-Quiz-Skill-Lambda-Function-Code

Copy and paste (replacing all previous code) into the code window that should appear.  This assumes you’ve selected the Code entry type of “Edit code inline” for the Lambda function code. As we work on more increasingly more advanced skills, we will likely use the zip upload feature to accommodate additional code resources. The astute will note we’ve merely copied and pasted code here. Yes, we’ll go back and customize soon. 🙂

Beneath the code window, leave the index.handler intact, select an existing role option in the Role dropdown menu, and use the role we previously created. Leave the other settings as-is, click the “Next” button to review details, and click, “Create Function”!

2017-03-27-006-Alexa-Quiz-Skill-Lambda-Function-Creation

Be sure you take note / record the ARN in the upper right-hand corner, as we’ll need that in our forthcoming Skill Interface development section.

Wrap-Up

That’s the first part! I don’t know about you, but this is getting easier as I go. We’ll next cover the skill interface and customization to make it your own skill. If this is your first article, be sure to check out the running stable of articles on how to learn Amazon Alexa skill development. Also, there’s a growing body of work on how to learn PostgreSQL, and some fledgling articles on learning algorithmic trading, for good measure.

Share your experience, thoughts and feedback in the comments below. Don’t be a stranger, help your friends along in Alexa Skill development and share with them. Cheers!

 

 

 

 

 

 

Update: Testing Your DIY Amazon Alexa / Echo Device (Raspberry Pi)

Hey there folks, happy weekend! Hope this post finds you well. This is a follow up to my previous post on how to make your own Amazon Alexa / Echo device from a Raspberry Pi.

First, an Apology for the Cliff Hanger

I left you hanging at the end of that post, and I’m very sorry about that. It was a Friday morning at almost 4 a.m., and I was ready for bed. So, here we are on the weekend! I’ve now had the chance to do some further validation and documentation in testing our DIY Amazon Alexa / Echo from a Raspberry Pi.

The samples I’ve provided aren’t super in depth, but serve as proof of concept.

Recap: Where We Left Off

Here’s where we were at the end of the last article:

The first terminal will set Alexa up to be listening on port 3000 (remember the local host URLs from earlier?) The second window deals with setting up a Java client and logging into Amazon with the Security profile we set up. Logging in and confirming will enable you to initiate the connection to Alexa, paving the way for the third terminal, which enables the wake word detection and actual running of the Alexa service. Woohoo! I’ll update with examples later.

I’ve booted up our trusty Raspberry Pi back up, and opened 3 command line terminals.

Preparing for Test

1. Companion Service

First item of business, is to run the companion service, first command line terminal. Type the below:

cd Desktop/alexa-avs-sample-app/samples/companion service && npm start

After returning the above line of code, successful output should end with, “Listening on Port 3000” and “Successfully retrieved registration code for xxxxxxx / xxxxxxx ”

Below, steps 1 & 2 combined since I was a bit slow on thinking to photograph in the moment. 🙂

2017-02-26-001-Running-Alexa-AVS-Companion-Service

2. Java Client / Authorizing Device

The second piece for testing here is the Java client and authorizing the device with Amazon. (Remember the security profile setup from the previous How to Build Article?) In the second command line terminal, type the following:

cd Desktop/alexa-avs-sample-app/samples/javaclient && mvn exec:exec

A few things should happen here, outside of Matrix-like code waterfalls. First, a window prompting you to login to Amazon to enable the security profile for your device should appear. Second, after you click through to the browser (or paste URL into browser), you should see a log-in screen like the below. Enter your credentials, approve access, and close the window after you see a screen that displays the message, “device tokens ready”

2017-02-26-002-Verify-Raspberry-Pi-Alexa-Voice-Service

After you’ve completed the above steps, you should have a window (slightly hidden in the center, photo above) with a bearer token and a button to listen. At this point, I just ran a simple test saying, “hello” and Alexa said, “hello” back. We’re almost there!

3. Wake Word Detection / Connecting to AVS Client

The final piece is connecting to the AVS client and enabling wake word detection, which means we don’t have to press the “Listen” button every time we want to do something. Last piece of command line!

cd Desktop/alexa-avs-sample-app/samples/wakeWordAgent/src && ./wakeWordAgent -e kitt_ai

After the script runs, the last line of code output should read, “Connected to AVS Client”. You’re now ready to use Alexa.

2017-02-26-004-AVS-Client-Connected-Wake-Word-Detection-On

Testing!

Below is one of the quick tests I ran on Pi Alexa. Si

mple time check and request for a joke. Now we’re cooking with gas!

 

Wrap Up

Building an Alexa has been a very instructive process. I don’t know about you, but I’m ready for actual skill development now. Stay tuned as I recap the changes through my first Alexa skill, a remix of the Space Geek sample, and begin working through more advanced skills and concepts such as analytics integration. Cheers!

DSC_0005 Cover Photo by Zach Doty for Build Your Own Amazon Alexa x Echo from Raspberry Pi

How to Build Your Own Amazon Alexa with a Raspberry Pi

Howdy, it’s been a minute since my last post on Alexa Skill Development. I left us hanging, as I mentioned in one of my previous SQL posts, work craziness, sickness, and general life stuff happening imposed a brief, involuntary hiatus on writing.

Enough self talk to make future self feel better. Let’s build our own Amazon Alexa with a Raspberry Pi! What a step up from our previous articles. 🙂

But first! A couple of notes: This is NOT necessary for you to do in learning Alexa Skill Development. You can use a regular Echo instead of this expedition into Computer Homebrew 102. Also, I developed my first Alexa skill without an Echo or comparable device at all. One more thing, this is a long post that is both deep and wide ranging. Don’t say I didn’t warn you.

1. The Materials List

To get started, you’ll need a few things:

  1. Raspberry Pi, version 2 or later
  2. Power source
  3. Micro SD card (Recommended at least 8 gb in storage size)
  4. Speaker with a line-in 3.5mm cable (or headphones of similar line-in spec)
  5. USB microphone
  6. Keyboard and Mouse
  7. HDMI cable to connect to a monitor or TV
    1. Obviously, you need a monitor or TV. 🙂

 

A few notes on the Raspberry Pi: I recommend you get a pre-assembled kit, for time and convenience, if nothing else. I previously purchased from CanaKit on Amazon, and have been pleased with it. If, for some reason, you are building your own or need to reformat, the two articles below from RaspberryPi.org are simple, fast instructions to get you up to speed.

 

Formatting a MicroSD card 32 GB or less:

https://www.raspberrypi.org/documentation/installation/noobs.md

Downloading New Out of Box Software (NOOBS) for Raspberry Pi, in preparation of your first boot.

https://www.raspberrypi.org/downloads/noobs/

 

Okay, we’re going to proceed assuming that you’ve taken care of the above, and have successfully booted your Pi, connected all requisite hardware, connected to the internet, and so on. Below is where I’m at.

2017-02-20-001-Alexa-Raspberry-Pi-Successful-Boot

2. Installing Other Utilities

Another note here, it is possible to SSH (read: a bit like Microsoft’s RDP remote desktop application, but command line style) your way into the Raspberry Pi. I will not be doing that. This may sound a bit silly, but I don’t have a multi-screen dock for my laptop (capped at 2), and I’m happy for the Pi and other monitor to be a standalone computer. (Perks of a wide desk.) Also, the Wi-Fi USB card I’m using is very slow at the moment. Also, an edit after I’ve written this post offline: Linux-esque command line work is a royal pain in the you-know-what. Remarkable computing has advanced to where it is today. More on Raspberry Pi intricacies later.

Enough of my discourse, let’s continue setting up our Raspberry Pi / DIY Alexa to-be. Task time.

Navigate to your Pi’s command line module.

  1. We’re going to update the GET. Type:
    1. sudo apt-get update (Pro tip: don’t misspell sudo as I’ve laughingly done on the first try.)
    2. In the new line created by default, type: clear and hit enter. This will clear your command line.

2017-02-20-003-Alexa-Raspberry-Pi-Get-Update

3. Registering Your Raspberry Pi as an Alexa Voice Service Device Type

Alright, head to the Amazon Developer Portal and log in with your credentials.. (If you’ve followed along with previous posts, you have a login! If not, see this article on setting up an AWS account.)

C-2017-02-23-001-Alexa-Raspberry-Pi-Registration

Once you’ve logged in, click on the Alexa navigation item, then click “Get Started”. You should land on a page that has a “Register Product Type” drop-down. Select Device and continue.

C-2017-02-23-002-Alexa-Raspberry-Pi-Registration

You’ll be taken to a new screen / process to create a new device type. Choose and type your  device type ID and display name. For ease of process here, I’ve used the same value for device type ID and display name.

C-2017-02-23-003-Alexa-Raspberry-Pi-Registration

Once you’ve selected your ID and name of choice, click next. Now we need to create a new security profile. Click the dropdown menu that reads, “Select Security Profile” and click, “Create New Profile”. If you’ve filled out all the fields properly, you should have the option to submit this device / product. Hooray! Below is what I see after I submit the new device.

C-2017-02-23-004-Alexa-Raspberry-Pi-Registration

Create a Security Profile Name and Description of your choosing and click “Next”.

C-2017-02-23-005-Alexa-Raspberry-Pi-Registration

You’ll now see a new screen with your created security profile. Below, you should see some tabs such as, “General”, “Web Settings”, “Android/Kindle Settings”, and so forth. Click on “Web Settings” and then click “Edit”.

C-2017-02-23-006-Alexa-Raspberry-Pi-Registration

You should now be able to edit the “Allowed Origins” and “Allowed Return URLs” fields. Enter the following values into each of the fields, respectively:

1) https://localhost:3000

2) https://localhost:3000authresponse

Once you’ve entered the above values, click “Next”.

C-2017-02-23-007-Alexa-Raspberry-Pi-Registration

Now we need to add some additional detail about our device type.

  • Upload an image (I used this one, they’re picky about sizing)
  • Choose a category (I selected “Other”)
  • Provide a short description to your pleasing
  • Select “No” for plans on making product available to general public
  • Select “No” for product directed to children

C-2017-02-23-008-Alexa-Raspberry-Pi-Registration

Click “Next” to proceed. The next screen asks about applying for access to Amazon Music. I’m selecting “No” for the purposes of this exercise.

4. Enable Login With Amazon for your new Device / Product

Sweet! After you click, “Submit”, you should see the below. Now head over to the “Apps & Services” section, and select the “Login with Amazon” item, once the Apps & Services screen has loaded.

C-2017-02-23-009-Alexa-Raspberry-Pi-Registration

From the drop-down menu of existing security profiles, select the profile we just created. You’ll need to enter a consent privacy notice URL and a consent logo image. Because we’re doing anything public facing, you can enter any URL you’d like here. For the image, I used the same image from the device creation process. Click “Save” and let’s keep moving.

C-2017-02-23-011-Alexa-Raspberry-Pi-Registration

Upon a successful save, you should see a table with a column labeled “Oauth2 Credentials”. Click, “Show Client ID and Client Secret”, copy and save the information somewhere safe. Next stop, Raspberry Pi.

5. Install the Application on Your Raspberry Pi

Flip back over to your Raspberry Pi and type the following two bullet point texts as unique lines into command line.

  • cd Desktop
  • git clone https://github.com/alexa/alexa-avs-sample-app.git

It should take a minute or two to process, and you should see the below.

C-2017-02-23-012-Alexa-Raspberry-Pi-Sample-App-Setup

Next, type the below point texts as unique lines into command line:

  • cd alexa-avs-sample-app/
  • nano automated_install.sh

After returning the two above lines, you should see something like the below. Remember what we entered in the Developer Console a few steps ago? You’ll need this information here. (Highlighted boxes.) Update from 2/25/2017: I actually had quite a bit of trouble with this step. Linux command line / text emulator is not my friend yet. The trouble I had here was making and saving my changes to the below. However, the program is surprisingly helpful! It will prompt you to verify credentials before install proceeds.

C-2017-02-23-014-Alexa-Raspberry-Pi-Sample-App-Setup

After you’ve made the appropriate changes, command line language of CTRL + X should help you save the changes. Close out the command line window and re-open. Type the following bullet texts:

  • cd Desktop
  • cd alexa-avs-sample-app
  • . automated_install.sh

When prompted for the AVS + Raspberry Pi License and Agreement, obviously answer and/or “y” to proceed, and answer yes and appropriate and desired throughout the setup process. E.g., you’ll be asked about language preference, audio input settings, enabling wake word detection, and so forth. (It takes anywhere from 30 min to 1 hour.)

Once the install runs, it’s time to start the Alexa service!

6. Running the Alexa Service / Finishing Touches

To test and run the Alexa service, we need 3 command line terminals open. The command paths for these are at the end of the install. (As I type this, the latest install on my Pi is approaching 45 minutes, so I’ll have to give you the bare bones for now based on past tests and some generous documentation.

The first terminal will set Alexa up to be listening on port 3000 (remember the local host URLs from earlier?) The second window deals with setting up a Java client and logging into Amazon with the Security profile we set up. Logging in and confirming will enable you to initiate the connection to Alexa, paving the way for the third terminal, which enables the wake word detection and actual running of the Alexa service. Woohoo! I’ll update with examples later.

Update — 2/25/2017:

So, the whole process took a looooong time. At about 3 am of the night I wrote / finished this post, the Pi finally finished unpacking and installing everything. Below is our success confirmation! I’ll be testing this evening…

Wrap-Up

Goodness, what a ride, if you stuck it through the whole article. You could do this, or just get a darn Echo. After all this, I recommend you buy an Echo. 🙂

Other miscellaneous updates from 2/25/2107: By the time I got to the wrap up, it was 3:30 in the morning, yikes! I wasn’t feeling very descriptive, nor was I yesterday either. This was an incredibly long process that took several days from start to finish. Was it worth it? Yes. I’m still going to test the capabilities tonight and hopefully have some follow up’s in the coming days. Will I be primarily using an Echo moving forward? Yes.

The BETWEEN Statement: SQL Statement Fundamentals

Hey there, folks! Welcome back to our journey in learning SQL. Our last few of posts covered the ORDER BY clause, LIMIT statement and the COUNT function. (See full list of SQL tutorials here.)

Today, we’re going to cover the BETWEEN statement. This is the start of some deeper material. In addition to the BETWEEN statement, we’ll also soon be covering IN and LIKE statements.

 

About the BETWEEN Statement

The BETWEEN statement (rather, operator) is used to match a value against a specified range of values. Maybe we want to get transactions between a certain dollar amount.

For example, value BETWEEN low AND high;

More about the BETWEEN statement. If the value is greater than or equal to the low value and  less than or equal to the high value, the expression returns true, or vice versa. Also, the BETWEEN operator can be rewritten by using the greater than or equal to ( >=) or less than or equal to ( <=) operators as the following statement.

value >= low and value <= high;

One other way to think about the BETWEEN statement is that takes two WHERE statements and lumps them into one. Think back to the WHERE statement, as we would say first:

SELECT column1 FROM table WHERE column1 >= 2 AND column1 <= 7;

 

To BETWEEN or NOT BETWEEN

Conversely, you can extend the usage of the original BETWEEN operator to NOT BETWEEN. This is similar in concept, except working toward exclusion, instead of inclusion. So, if we want to check if a given value is outside of a range, we can use the NOT BETWEEN operator as below.

value NOT BETWEEN low AND high;

Again, similarly to the double WHERE statements, NOT BETWEEN simplifies the burden into a single statement. For sanity, we’ll skip the SELECT WHERE example.

 

Using BETWEEN in pgAdmin / PostgreSQL

Below, we’ve taken the BETWEEN statement for a road test on our address table.

SELECT address_id,address FROM address

WHERE address_id BETWEEN 10 AND 20;

2017-02-18-001-BETWEEN-SQL-Statement-Example

How sweet was that? Syonara, comparison operators. Conversely, if we convert the above query into a NOT BETWEEN operator, we should see the below statement return the following results.

SELECT address_id,address FROM address

WHERE address_id NOT BETWEEN 10 AND 20;

2017-02-18-002-NOT-BETWEEN-SQL-Statement-Example

Okay, that was cool. Let’s hold up for a quick second. What about non-integer columns, such as data? Caveat: there’s a lot more to data types than our humble example below. For the purposes of this article, we can take a YYYY-MM-DD date and place the values into strings.

SELECT rental_id,rental_date,inventory_id FROM rental

WHERE rental_date BETWEEN ‘2005-05-24’ AND ‘2005-05-27’;

2017-02-18-003-BETWEEN-Non-Integer-SQL-Statement-Example

Voila!

Wrap-Up

Alright, for those of you reading this later, it’s 2 a.m. on a Friday night / Saturday morning, and I’m about ready to call it a night. Sorry I’m not providing a better conclusion for you today. I’m excited to delve further into more complex SQL queries. Keep track of my shared journey of a beginner learning SQL. Cheers!

 

 

Getting Started with Alexa Development 02: Signing Up to Alexa Development Portal

Welcome back to our journey in learning how to program Amazon Alexa Skills via Echo voice search. In the previous article, we walked through the process of setting up an Amazon Web Services (AWS) account. Today, we’ll set up an account at the Alexa Development portal, a distinct entity from the AWS portal.

 

Without further ado, let’s jump in. Go to https://developer.amazon.com/public/solutions/alexa.

2017-02-03-001-Alexa-Developer-Home-Screen

You should land on something like the above screen. Click on the “Sign In” button, you can create a new account from this screen if you need.

Important Note: If you already have an Amazon.com account (regular old Amazon shopping account), use those credentials to log in.

Obviously, if you’re a returning Alexa Development Portal user, you can skip the account creation process shown below. If you’re creating a new account, you’ll need to fill out a screen that will likely resemble the below, and click “Save and Continue” when you’ve finished.

2017-02-03-002-Alexa-Developer-Account-Creation

Next, you should be presented with an App Distribution and Services Agreement screen. Be sure to give it a quick read. If you want to use the services, then you’ll need to agree by clicking save and continue. 🙂

The final registration step addresses payments and whether you plan to monetize the apps you develop. For the purposes of my usage, and this learning, I checked “No” to both options before proceeding.

2017-02-03-003-Alexa-Developer-Account-Creation-Monetization

Once you finish that step, you should find yourself in the Amazon Developer Console! Good thing we got the hard material out of the way first, huh?

This should wrap up a pretty quick introductory section for setups. Feel free to visit my previous article on getting set up with AWS, or go to my learning home page on how to start developing Alexa Skills. Thanks and see you at the next article!